45 + 32 + 37 = 114
114÷3 = 38
4 total quizzes,
for a 40 average on 4 quizzes she needs 40*4 = 160 total points
for 3 quizzes she has 45 +32 +37 = 114 points
160-114 = 46, she needs at least a 46 on the 4th quiz
Step-by-step explanation:
We want to find two things-- the speed of the boat in still water and the speed of the current. Each of these things will be represented by a different variable:
B = speed of the boat in still water
C = speed of the current
Since we have two variables, we will need to find a system of two equations to solve.
How do we find the two equations we need?
Rate problems are based on the relationship Distance = (Rate)(Time).
Fill in the chart with your data (chart attached)
The resulting speed of the boat (traveling upstream) is B-C miles per hour. On the other hand, if the boat is traveling downstream, the current will be pushing the boat faster, and the boat's speed will increase by C miles per hour. The resulting speed of the boat (traveling downstream) is B+C miles per hour. Put this info in the second column in the chart. Now plug it into a formula! <u>Distance=(Rate)(Time) </u>Now solve using the systems of equations!
Answer:
second one
Step-by-step explanation:
Answer:
20
Step-by-step explanation:
Assuming that the equation is x³ = 64, that can be solved by putting cube root on both sides like so: ∛(x³) = ∛64, which simplifies to <em>x = 4</em>.
Plugging that into our expression gives us <em>4² + 4</em>, which is 20.
Answer:
Step-by-step explanation:
There are 3 ways to find the other x intercept.
1) Polynomial Long Division.
Divide x^2 - 3x + 2 by the binomial x - 2, because by the Factor Theorem if a is a root of a polynomial then x - a is a factor of said polynomial.
2) Just solving for x when y = 0, by using the quadratic formula.
.
So the other x - intercept is at (1, 0)
3) Using Vietta's Theorem regarding the solutions of a quadratic
Namely, the sum of the solutions of a quadratic equation is equal to the quotient between the negative coefficient of the linear term divided by the coefficient of the quadratic term.

And the product between the solutions of a quadratic equation is just the quotient between the constant term and the coefficient of the quadratic term.

These relations between the solutions give us a brief idea of what the solutions should be like.