Hey so yeah this can be a challenging problem, Vol (V) is much easier to solve than surface area (SA), but I'll show you how it's done, my friend.
First of all, V (prism) = area of base (B) × h
We know that the height (h) of this prism is given, which we'll need later on: h = 5 ft, and area of base (B) is given as 60 ft2
So V = 60 ft2 × 5 ft = 300 ft3
So now for the hard part... how to calculate the SA of this prism
IF YOU DON'T NEED SA FOR THIS TYPE OF PROBLEM, DO NOT PROCEED!!!
[VERY DETAILED]
means solving the dimensions (sides) of that pesky polygon base (B) or lid.
The most important things about polygons are:
1) is it regular (same angle ° and side length)??
2) How many sides or angles??
This has to be regular, because they give you no other info so it has to be, in order to solve. And then it has 5 sides and angles = regular pentagon. ("penta" means 5).
Now there are 360° in any circle, so:
take the central angles of where the sides meet at the center forming triangles (see drawing above), each of those (5) central <'s = 360/5 = 72°
Now the apex of each of these triangles = 72°
but with our 5 triangles, we need to find the height of each triangle -- which is the midpoint of the side (base (b) of triangle), and h is perpendicular to this b. By bisecting that apex angle of 72, it forms 2 equal right triangles of
72/2 = 36°. So each right triangle has 36, 90, and?? 180-36-90 = 90-36 = 54°
let's call the base (b) = 1 side of pentagon
= side (s)
Therefore (see 2nd image drawn above) tangent (tan) of € = opposite/adjacent, or
tan (54) = h÷1/2b --> h = [tan (54)]×(1/2)b
1/2b = h/[tan (54)] = h/1.38
Also the area of each of the larger 5 triangles A(t) = 1/2b×h, and that area A(t) × 5 = area of whole pentagon base A(B)
So now after all that... our A(B) given at beginning = 60ft2. let's put it all together:
1/2b = h/[tan (54)] = h/1.38
A(t) = 1/2b×h, and A(B) = 5×A(t)
which means that A(B) = 5×(1/2b×h)
AND since the other calculation shows that 1/2b = h/1.38, plug that value into the A(B) formula...
.
.
.
now that we have height (h) of each triangle, we can go back to our tan equation for the triangle: tan (54) = 1.38 = h/(1/2b)
--> 1/2×b = h/1.38 --> base (b) = 2h/1.38
b = 2(4.06 ft)/1.38 = 8.12 ft/1.38 = 5.90 ft, for which b us also the width of each rectangular side panel (w)
length (l) of these sides was given as height of the whole prism = 5 ft
NOW FINALLY... THE FINAL SURFACE AREA OF THE PRISM (SA) = (2×A(B)) + (5×rectangular side)
SA = (2×60 ft2) + (5×(l×w)) = 120 ft2 + 5×5ft×5.9ft
SA = 120 ft2 + 147.62 ft2 = 267.62 ft2
Answer:

Step-by-step explanation:
To calculate the lenght of the diagonal d across the square, we can assume that the square it is compound of two right triangles. So, we can resolve this exercise using The Pythagorean Theorem.
<em>The Pythagorean theorem</em> states that in every right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the respective lengths of the legs. It is the best-known proposition among those that have their own name in mathematics.
If in a right triangle there are legs of length a and b, and the measure of the hypotenuse is c, then the following relation is fulfilled:
a is the height, b is the base, and c is
the hypotenuse.
To obtain the value of the hypotenuse

To find the value of the lenght of the diagonal d across the square, we have:
Where a = b = 20
Substituting the values

Round the answer to 2 decimal places

Answer: 60°
Step-by-step explanation: use exterior angle property,
therefore, y+70°=130°
y=130°-70°
y=60°
How many three-fourths are in 2? 2 complete sets of three-fourths can be made and 2 of the 3 pieces need to make \frac34 are left over, so we have another \frac23 of a three-fourths. and we can see that there are 2 wholes with 4 fourths in each whole, so there are 2\times 4 fourths in 2.
The candies are being sold at a rate of 21 candies per hour