Answer:
log_a(b) - log_a(c) = log_a(\frac{b}{c})
Using that formula we get:
log_6(60) - log_6(30) = log_6(2)
Answer:
so u multiply negative four times nagative 1.5
Answer:
Solution given:
The volume of two similar solids are 128 m³
and 250 m³.
surface area of larger solid is 250m²
<u>let</u><u> </u><u>surface</u><u> </u><u>area</u><u> </u><u>of</u><u> </u><u>smaller</u><u> </u><u>solid</u><u> </u><u>be</u><u> </u><u>x</u><u>.</u>
<u>Since</u><u> </u><u>they</u><u> </u><u>are</u><u> </u><u>similar</u>

x=128
the surface are of the
smaller solid is 128m²
Since this is a parallelogram and the angles are adjacent to one another, a theorem will prove that the sum of these two angles would equal 180°
Therefore, we can set up this equation:
(2x + 24) + x = 180 ⇒ Remove parentheses
2x + 24 + x = 180 ⇒ Combine like terms
3x + 24 = 180 ⇒ Subtract 24 from both sides
3x = 156 ⇒ Divide both sides by 3
x = 52°
(tanθ + cotθ)² = sec²θ + csc²θ
<u>Expand left side</u>: tan²θ + 2tanθcotθ + cot²θ
<u>Evaluate middle term</u>: 2tanθcotθ =
= 2
⇒ tan²θ + 2+ cot²θ
= tan²θ + 1 + 1 + cot²θ
<u>Apply trig identity:</u> tan²θ + 1 = sec²θ
⇒ sec²θ + 1 + cot²θ
<u>Apply trig identity:</u> 1 + cot²θ = csc²θ
⇒ sec²θ + csc²θ
Left side equals Right side so equation is verified