To add or subtract fractions , their denominator ( The one beneath the numerator, the one that divides the numerator ).
If they both terms have the same denominators you just have to add or subtract their numerators and stay with your denominator:
example: 3/5 + 4/5 = 7/5
2/3 - 1/3 = 1/3
But if the terms you are adding or subtracting do NOT have the same denominator , you have to make their denominator equal by equivalency :
Example : 2/3 + 1/6
I cant add 2/3 to 1/6 because they have different denominators. But if I multiply 2/3 by 2/2 it wil be 4/6:
4/6 + 1/6 = 5/6 !!
As 2/2 = 1 , I did not change the value but I changed the numerator and denominator of 2/3 :
If I multiply the numerator of a fraction by any number , but I do the same thing to the denominator, It creates a equivalency, where I dont change the actual values of the fraction.
I hope you understood my brief explanation , and please consider marking this awnser as Branliest if you think it deserves it. Thank you ! :)
Answer:
![T = \left[\begin{array}{ccc}-\frac{1}{\sqrt{2} } &\frac{1}{\sqrt{2} }\\\frac{1}{\sqrt{2} }&\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%26%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%26%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Let General Transformation matrix be denoted as T
Step 1: Clockwise rotation of 45 degrees
General counterclockwise rotation matrix in 2-dimension is given as
![R(\theta)=\left[\begin{array}{ccc}cos\theta & - sin\theta\\sin\theta&cos\theta\\\end{array}\right]](https://tex.z-dn.net/?f=R%28%5Ctheta%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%5Ctheta%20%26%20-%20sin%5Ctheta%5C%5Csin%5Ctheta%26cos%5Ctheta%5C%5C%5Cend%7Barray%7D%5Cright%5D)
For clockwise rotation we need to insert θ as negative in the above matrix. Therefore, the resulting matrix is
![R(-\theta)=\left[\begin{array}{ccc}cos\theta & sin\theta\\-sin\theta&cos\theta\\\end{array}\right]](https://tex.z-dn.net/?f=R%28-%5Ctheta%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%5Ctheta%20%26%20sin%5Ctheta%5C%5C-sin%5Ctheta%26cos%5Ctheta%5C%5C%5Cend%7Barray%7D%5Cright%5D)
as sin(-θ) = -sin (θ) and cos(-θ) = cos (θ)
For 45 degrees
and 
![R(-45)=\left[\begin{array}{ccc}\frac{1}{\sqrt{2} } & \frac{1}{\sqrt{2} }\\-\frac{1}{\sqrt{2} }&\frac{1}{\sqrt{2} }\\\end{array}\right]](https://tex.z-dn.net/?f=R%28-45%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%20%26%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%26%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step 2: Reflection through line y = x
This type of reflection maps (x,y)→(y,x)
Therefore the general matrix is
![R(x,y)=\left[\begin{array}{ccc}0&1\\1&0\end{array}\right]](https://tex.z-dn.net/?f=R%28x%2Cy%29%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C1%260%5Cend%7Barray%7D%5Cright%5D)
Step 3: General Transformation Matrix
T = R(x,y) R(-θ)
![T=\left[\begin{array}{ccc}0&1\\1&0\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} } & \frac{1}{\sqrt{2} }\\-\frac{1}{\sqrt{2} }&\frac{1}{\sqrt{2} }\\\end{array}\right]](https://tex.z-dn.net/?f=T%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C1%260%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%20%26%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%26%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![T = \left[\begin{array}{ccc}-\frac{1}{\sqrt{2} } &\frac{1}{\sqrt{2} }\\\frac{1}{\sqrt{2} }&\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%20%26%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%26%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Answer:
y = 4
Step-by-step explanation:
all y values is 4 on the line.
Answer:
hi
Step-by-step explanation:
no