Answer:
0 g.
Explanation:
Hello,
In this case, since the reaction between methane and oxygen is:

If 0.963 g of methane react with 7.5 g of oxygen the first step is to identify the limiting reactant for which we compute the available moles of methane and the moles of methane consumed by the 7.5 g of oxygen:

Thus, since oxygen theoretically consumes more methane than the available, we conclude the methane is the limiting reactant, for which it will be completely consumed, therefore, no remaining methane will be left over.

Regards.
Answer:
the reactants are 2h2 and 02. the products are 2h20
have a great day my friend ;)
<333
Since the direction of particle displacement in electromagnetic waves is also perpendicular to the direction of motion, generating the waveform of visible light and other forms of electromagnetic radiation, they are also transverse waves.
In a transverse wave, the displacement is perpendicular to the direction of motion (at an angle of 90 degrees Celsius). The direction of displacement (up and down) in the case of the ocean wave is perpendicular to the direction of wave motion (horizontally along the water), making it a transverse wave.
How far a particle has moved from its original starting position, or, in the case of an ocean wave, how high or low the water is, is measured by its displacement or amplitude.
learn more about displacement here;
brainly.com/question/321442
#SPJ4
<u>Answer:</u>
<em>The returns of the company as it is given is already large that is 91% and to get an outcome even better is what it is getting now. There should be certain improvements that needs to be applied with the </em><em>help of stoichiometric data gathered.
</em>
<u>Explanation:</u>
Since the cost of materials cannot be affected and have to be bought under similar rate of cost of working or process can be decreased. By using machines calculation and mechanical devices this come would be accurate and the laws would be minimised. Hence the companies outcome would increase.
What do you need to convert them to? Moles to mass?