<u>Answer-</u>
<em>The height of the traffic light is 21.8 feet.</em>
<u>Solution-</u>
As shown in figure, we can see the right triangle formed from the situation,
From the question,
BC = the distance walked by Andrew from the traffic light = 20 feet
Height of Andrew's eye = 5 feet
Height of the traffic light = AB + Height of Andrew's eye
From the properties of triangle,
![\Rightarrow \tan \theta =\frac{Height}{Base}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctan%20%5Ctheta%20%3D%5Cfrac%7BHeight%7D%7BBase%7D)
![\Rightarrow \tan C =\frac{AB}{BC}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Ctan%20C%20%3D%5Cfrac%7BAB%7D%7BBC%7D)
![\Rightarrow AB=\tan C\times BC](https://tex.z-dn.net/?f=%5CRightarrow%20AB%3D%5Ctan%20C%5Ctimes%20BC)
![\Rightarrow AB=\tan 40\times 20](https://tex.z-dn.net/?f=%5CRightarrow%20AB%3D%5Ctan%2040%5Ctimes%2020)
![\Rightarrow AB=16.8](https://tex.z-dn.net/?f=%5CRightarrow%20AB%3D16.8)
Therefore, height of the traffic light = AB + Height of Andrew's eye = 16.8+5 = 21.8 feet