At 10 square yards, both of the prices would be at $180
Answer:

Step-by-step explanation:
All the relations are not functions. We can determine ( identify ) whether a relation is function or not by drawing a vertical line intersecting the graph of the relation. This is called vertical line test.
- If the vertical line intersects the graph of a relation at one point , the relation is a function .
- If it cuts at more than one point , it is not a function. It means that if there are more points of the graph of a relation of a vertical line , same first component ( pre - image ) has more images ( second component ) which is not the function by definition.
--------------------------------------------------
Let's check all of the options :
☐ Option A :
- The vertical line cuts the graph at two points. So , the graph does not represent a function.
☐ Option B
- No! This is also not a function as the vertical line cuts the graph at two points.
☐ Option C
- Nah! This too can't be called a function as the vertical line cuts the graph at two points.
☑ Option D
- Yep! The vertical line cuts the graph at one point. Thus , the graph represents a function.
Yayy!! We found our answer. It's ' Option D '.
Hope I helped ! ツ
Have a wonderful day / night ! ♡
▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
(x^2) - 16 / x+4 = (x-4)(x+4) / (x+4) = x-4, x not equal to -4
D is the answer.
Answer:
The correct answer B) The volumes are equal.
Step-by-step explanation:
The area of a disk of revolution at any x about the x- axis is πy² where y=2x. If we integrate this area on the given range of values of x from x=0 to x=1 , we will get the volume of revolution about the x-axis, which here equals,

which when evaluated gives 4pi/3.
Now we have to calculate the volume of revolution about the y-axis. For that we have to first see by drawing the diagram that the area of the CD like disk centered about the y-axis for any y, as we rotate the triangular area given in the question would be pi - pi*x². if we integrate this area over the range of value of y that is from y=0 to y=2 , we will obtain the volume of revolution about the y-axis, which is given by,

If we just evaluate the integral as usual we will get 4pi/3 again(In the second step i have just replaced x with y/2 as given by the equation of the line), which is the same answer we got for the volume of revolution about the x-axis. Which means that the answer B) is correct.
22 is the answer to this math problem