Hi there!
First, let's find the slope of the two points using the slope formula (y2 - y1 / x2 - x1).
S = 4 - 2 / 3 - 5
S = 2 / -2
S = -1
Next, we'll plug in the slope and a point into point-slope form (y - y1 = s(x - x1)) in order to find an equation. I will show the work using both points, which will result in two different equations.
(2,5)
y - 5 = -1(x - 2)
y - 5 = -x + 2
y = -x + 7
(4,3)
y - 3 = -1(x - 4)
y - 3 = -x + 4
y = -x + 7
The two equations came out the same! Which is completely okay, and happens sometimes.
Hope this helps!! :)
If there's anything else that you're needing help with, don't be afraid to reach out!
Answer:
the answer is 4-x^2
Step-by-step explanation:
-2x
and 2x cancel out
Answer:
They bought 5
Step-by-step explanation:
65x+40y=765
65(5)+40(11)=765
F(x)=x⁴-1
f'(x)=4x³
Newton’s Method: x[n+1]=x[n]-f(x[n])/f'(x[n]); x[n+1]=x[n]-(x[n]⁴-1)/4x[n]³
x₁=3.00390625
x₂=2.26215...
x₃=1.7182...
X'=X-(X⁴-1)/4X³=X-X/4+1/4X³ is a symbolic way of writing the recursive formula, where X' represents the next iteration.
When X'≈X, -X/4+1/4X³≈0; so X/4≈1/4X³; X≈1/X³, so X⁴≈1 and X⁴-1≈0. But this is f(x)≈0. Hence Newton’s Method converges to a solution.
The rate of change is x[n+1]-x[n]=-(x[n]⁴-1)/4x[n]³=x[n]/4-1/4x[n]³ or symbolically -X/4+1/4X³.
Note that the method converges to one solution. A different x₀ will possibly converge to the solution x=-1.
You can use photomath for this