I am not sure what this answer is
Answer:
just need
Step-by-step explanation:
free points
Answer:
ok
Step-by-step explanation:
Answer:
h(t) = -5*t^2 + 20*t + 2
Step-by-step explanation:
First, we know that the motion equation of the ball will be quadratic, so we write the equation:
h(t) = a*t^2 + b*t + c
Now we need to work with the data in the table.
h(1) = 17
h(3) = 17
h(1) = h(2) = 17
Then we have a symmetry around:
(3 - 1)/2 + 1 = 2
Remember that the symmetry is around the vertex of the parabola, then we can conclude that the vertex of the parabola is the point:
(2, h(2)) = (2, 22)
Remember that for a quadratic equation:
y = a*x^2 + b*x + c
with a vertex (h, k)
we can rewrite our function as:
y = a*(x - h)^2 + k
So in this case, we can rewrite our function as:
h(t) = a*(t - 2)^2 + 22
To find the value of a, notice the first point in the table:
(0, 2)
then we have:
h(0) = 2 = a*(0 - 2)^2 + 22
= 2 = a*(-2)^2 + 22
2 = a*(4) + 22
2 - 22 = a*(4)
-20/4 = -5 = a
Then our function is:
h(t) = -5*(t - 2)^2 + 22
Now we just expand it:
h(t) = -5*(t^2 - 4*t + 4) + 22
h(t) = -5*t^2 + 20*t + 2
The correct option is the first one.
Step-by-step explanation:

Given expression is

To, evaluate this limit, let we simplify numerator and denominator individually.
So, Consider Numerator

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.
So, using Sum of n terms of GP, we get


Now, Consider Denominator, we have

can be rewritten as

![\rm \: = \: {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%201%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7Bn%20-%202%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
![\rm \: = \: {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D)
Now, Consider

So, on substituting the values evaluated above, we get
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\dfrac{ {n}^{n} - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cdfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B1%20-%20%20%5Cdfrac%7B1%7D%7Bn%7D%20%7D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n} - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%20%20-%201%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%20%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%7Bn%7D%5E%7Bn%7D%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B%5Cbigg%5B1%20-%20%5Cdfrac%7B1%7D%7B%20%7Bn%7D%5E%7Bn%7D%20%7D%20%5Cbigg%5D%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
![\rm \: = \: \displaystyle\lim_{n \to \infty} \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} + - - - + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdisplaystyle%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20%20%5Cfrac%7B1%7D%7B%5Cbigg%5B1%20%2B%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%5Cbigg%5B1%20-%20%7B%5Cdfrac%7B2%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%2B%20%20-%20%20-%20%20-%20%20%2B%20%5Cbigg%5B%7B%5Cdfrac%7B1%7D%7Bn%7D%5Cbigg%5D%7D%5E%7Bn%7D%20%5Cbigg%5D%7D%20)
Now, we know that,
![\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x} = {e}^{k}}}}](https://tex.z-dn.net/?f=%5Cred%7B%5Crm%20%3A%5Clongmapsto%5C%3A%5Cboxed%7B%5Ctt%7B%20%5Cdisplaystyle%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cbigg%5B1%20%2B%20%5Cdfrac%7Bk%7D%7Bx%7D%20%5Cbigg%5D%5E%7Bx%7D%20%20%3D%20%20%7Be%7D%5E%7Bk%7D%7D%7D%7D%20)
So, using this, we get

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have





Hence,
