1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pie
4 years ago
5

A teacher bought 12 sheets of stickers to use on the homework of her students. Each sheet had 48 stickers. At the end of the yea

r, the teacher had 123 stickers remaining. Which is the best estimate for the number of stickers the teacher used?
Mathematics
1 answer:
eimsori [14]4 years ago
3 0

Answer:

453

Step-by-step explanation:

Find out how many stickers she started with multiply 12 sheets by 48 (the number of stickers per sheet)

12*48 = 576

Subtract the remaining stickers (123) at the end of the year.

576-123 = 453

You might be interested in
Determine the 6th tern for the sequence: 4, 0.4​
I am Lyosha [343]
I am not sure what this answer is
8 0
3 years ago
Which pair of functions are inverses?
sashaice [31]

Answer:

just need

Step-by-step explanation:

free points

7 0
3 years ago
Can someone please explain this to me and help me
sergeinik [125]

Answer:

ok

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
The question is in the image
Drupady [299]

Answer:

h(t) = -5*t^2 + 20*t  + 2

Step-by-step explanation:

First, we know that the motion equation of the ball will be quadratic, so we write the equation:

h(t) = a*t^2 + b*t + c

Now we need to work with the data in the table.

h(1) = 17

h(3) = 17

h(1) = h(2) = 17

Then we have a symmetry around:

(3 - 1)/2 + 1 = 2

Remember that the symmetry is around the vertex of the parabola, then we can conclude that the vertex of the parabola is the point:

(2, h(2)) = (2, 22)

Remember that for a quadratic equation:

y = a*x^2 + b*x + c

with a vertex (h, k)

we can rewrite our function as:

y = a*(x - h)^2 + k

So in this case, we can rewrite our function as:

h(t) = a*(t - 2)^2 + 22

To find the value of a, notice the first point in the table:

(0, 2)

then we have:

h(0) = 2 = a*(0 - 2)^2 + 22

         = 2 = a*(-2)^2 + 22

            2 = a*(4) + 22

           2 - 22 = a*(4)

            -20/4 = -5 = a

Then our function is:

h(t) = -5*(t - 2)^2 + 22

Now we just expand it:

h(t) = -5*(t^2 - 4*t + 4) + 22

h(t) = -5*t^2 + 20*t  + 2

The correct option is the first one.

4 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Other questions:
  • Suppose the position of an object moving horizontally after t seconds is given by the following functions s=f(t), s equals f , o
    11·1 answer
  • Which of the following is written as a rational function?
    8·2 answers
  • Identify the domain of the function shown in the graph!! PLEASE HELP
    9·1 answer
  • Find the area of the shaded part. Rectangle CDEF has an area of 24^2.
    12·1 answer
  • Fred’s company is planning a new logo. The diagrams show two similar versions of the planned logo.
    7·1 answer
  • Whats another name for line S?<br> S<br> D<br> В.<br> C<br> N
    11·1 answer
  • BRAINLIEST
    15·2 answers
  • Please answer it it’s 2:40pm and it’s due at 4:00pm..
    8·1 answer
  • Altitudes of right triangle ​
    12·1 answer
  • Write complete sentences to describe the three different ways Earth travels through space.​ Sorry this is a Science question.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!