Answer:
(A). The perimeter of the octagon is greater than that of the hexagon.
Step-by-step explanation:
Since, hexagon consists of 6 sides and 6 angles, thus the measure of one angle of the hexagon will be=![\frac{(n-2){\timeS}180^{\circ}}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B%28n-2%29%7B%5CtimeS%7D180%5E%7B%5Ccirc%7D%7D%7B6%7D)
=![\frac{(6-2){\timeS}180^{\circ}}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B%286-2%29%7B%5CtimeS%7D180%5E%7B%5Ccirc%7D%7D%7B6%7D)
=![\frac{(4){\timeS}180^{\circ}}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B%284%29%7B%5CtimeS%7D180%5E%7B%5Ccirc%7D%7D%7B6%7D)
=![120^{\circ}](https://tex.z-dn.net/?f=120%5E%7B%5Ccirc%7D)
Now, since MQ is the angle bisector of the one of the angle of the hexagon, therefore ∠QMP=60°.
Now, from ΔQMP. we have
![\frac{MP}{MQ}=cos60^{\circ}](https://tex.z-dn.net/?f=%5Cfrac%7BMP%7D%7BMQ%7D%3Dcos60%5E%7B%5Ccirc%7D)
![MP=\frac{1}{2}](https://tex.z-dn.net/?f=MP%3D%5Cfrac%7B1%7D%7B2%7D)
Thus, the perimeter of the hexagon is:
![P=12{\times}MP](https://tex.z-dn.net/?f=P%3D12%7B%5Ctimes%7DMP)
![P=12{\times}\frac{1}{2}](https://tex.z-dn.net/?f=P%3D12%7B%5Ctimes%7D%5Cfrac%7B1%7D%7B2%7D)
![P=6 units](https://tex.z-dn.net/?f=P%3D6%20units)
Thus, the perimeter of hexagon is 6 units.
Also, Since, octagon consists of 8 sides and 8 angles, thus the measure of one angle of the octagon will be=![\frac{(n-2){\timeS}180^{\circ}}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B%28n-2%29%7B%5CtimeS%7D180%5E%7B%5Ccirc%7D%7D%7B8%7D)
=![\frac{(8-2){\timeS}180^{\circ}}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B%288-2%29%7B%5CtimeS%7D180%5E%7B%5Ccirc%7D%7D%7B8%7D)
=![\frac{(6){\timeS}180^{\circ}}{8}](https://tex.z-dn.net/?f=%5Cfrac%7B%286%29%7B%5CtimeS%7D180%5E%7B%5Ccirc%7D%7D%7B8%7D)
=![135^{\circ}](https://tex.z-dn.net/?f=135%5E%7B%5Ccirc%7D)
Now, since AP is the angle bisector of the one of the angle of the octagon, therefore
.
From ΔAPC, we have
![AC=cos\frac{135}{2}](https://tex.z-dn.net/?f=AC%3Dcos%5Cfrac%7B135%7D%7B2%7D)
Now, Perimeter of octagon is:
![P=16{\times}cos\frac{135}{2}](https://tex.z-dn.net/?f=P%3D16%7B%5Ctimes%7Dcos%5Cfrac%7B135%7D%7B2%7D)
![P=16{\times}0.382](https://tex.z-dn.net/?f=P%3D16%7B%5Ctimes%7D0.382)
![P=6.122 units](https://tex.z-dn.net/?f=P%3D6.122%20units)
Thus, the perimeter of octagon is 6.122 units.
Now, the perimeter of octagon is greater than perimeter of the hexagon, thus option A is correct that is The perimeter of the octagon is greater than that of the hexagon.