The original price is $450.
<u>Step-by-step explanation:</u>
Step 1:
Given details, Discount%, D% = 30 and Selling Price, SP = $315
Step 2:
Write down formula for calculating the Original Price
Selling Price (SP) = Original Price (OP) - Discount (D)
Discount (D) = Original Price (OP) * (D%/100)
Step 3:
Substitute given values in the formula
315 = OP - D
D = 
D = 0.3 OP
Step 4:
Substitute value of D in the first formula
315 = OP - 0.3 OP
315 = OP (1 - 0.3) = 0.7 OP
Original Price, OP = 315/0.7 = $450
Correct option:

<h2>
Explanation:</h2>
Given that the line we are looking for is parallel to g, then the slope of that line and g is the same, therefore:

So we can write the point-slope form of the equation of the line as follows:

<h2>Learn more:</h2>
Graphying systems of linear equations: brainly.com/question/13799715
#LearnWithBrainly
Answer:
(12x - 6)/5
Step-by-step explanation:
6(2x-1)/5 => (12x - 6)/5 because of the distributive property.
You cannot simplify farther after you reach (12x - 6)/5.
<h3>
<u>Answer:</u></h3>

<h3>
<u>Step-by-step explanation:</u></h3>
A inequality is given to us and we need to convert it into standard form and see whether if it has a solution . So let's solve the inequality.
The inequality given to us is :-

Let's plot a graph to see its interval . Graph attached in attachment .
Now we can see that the Interval notation of would be ,
![\boxed{\boxed{\orange \tt \purple{\leadsto}y \in [-2,-1] }}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Corange%20%5Ctt%20%5Cpurple%7B%5Cleadsto%7Dy%20%5Cin%20%5B-2%2C-1%5D%20%7D%7D)
<h3>
<u>Hence</u><u> the</u><u> </u><u>standa</u><u>rd</u><u> </u><u>form</u><u> </u><u>of</u><u> </u><u>inequa</u><u>lity</u><u> </u><u>is</u><u> </u><u>y²</u><u>+</u><u>3y</u><u> </u><u>+</u><u>2</u><u> </u><u>≤</u><u> </u><u>0</u><u> </u><u>and</u><u> </u><u>the </u><u>Solution</u><u> </u><u>set</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>ineq</u><u>uality</u><u> </u><u>is</u><u> </u><u>[</u><u> </u><u>-</u><u>2</u><u> </u><u>,</u><u> </u><u>-</u><u>1</u><u> </u><u>]</u><u> </u><u>.</u></h3>