Answer:
a. a = 1, b = -5, c = -14
b. a = 1, b = -6, c = 9
c. a = -1, b = -1, c = -3
d. a = 1, b = 0, c = -1
e. a = 1, b = 0, c = -3
Step-by-step explanation:
a. x-ints at 7 and -2
this means that our quadratic equation must factor to:

FOIL:

Simplify:

a = 1, b = -5, c = -14
b. one x-int at 3
this means that the equation will factor to:

FOIL:

Simplify:

a = 1, b = -6, c = 9
c. no x-int and negative y must be less than 0
This means that our vertex must be below the x-axis and our parabola must point down
There are many equations for this, but one could be:

a = -1, b = -1, c = -3
d. one positive x-int, one negative x-int
We can use any x-intercepts, so let's just use -1 and 1
The equation will factor to:

This is a perfect square
FOIL:

a = 1, b = 0, c = -1
e. x-int at 
our equation will factor to:

This is also a perfect square
FOIL and you will get:

a = 1, b = 0, c = -3
Answer:
14x + 14
Step-by-step explanation:
Perimeter = 2( L + W)
2(2x+7 + 5x) = 2(7x + 7)
distributive property
= 14x + 14
Looks like the given limit is

With some simple algebra, we can rewrite

then distribute the limit over the product,

The first limit is 0, since 1/3ⁿ is a positive, decreasing sequence. But before claiming the overall limit is also 0, we need to show that the second limit is also finite.
For the second limit, recall the definition of the constant, <em>e</em> :

To make our limit resemble this one more closely, make a substitution; replace 9/(<em>n</em> - 9) with 1/<em>m</em>, so that

From the relation 9<em>m</em> = <em>n</em> - 9, we see that <em>m</em> also approaches infinity as <em>n</em> approaches infinity. So, the second limit is rewritten as

Now we apply some more properties of multiplication and limits:

So, the overall limit is indeed 0:

The answer is D as said above