Answer:
Step-by-step explanation:
Since the whole right side of that triangle is equal to 28 and the lower portion is 21, then we know the upper portion is 7. Set up a proportion using those sides and the fact that the 2 triangles are similar:
and cross multiply to get
21x = 126 and
x = 6
FIRST PARTWe need to find sin α, cos α, and cos β, tan β
α and β is located on third quadrant, sin α, cos α, and sin β, cos β are negative
Determine ratio of ∠α
Use the help of right triangle figure to find the ratio
tan α = 5/12
side in front of the angle/ side adjacent to the angle = 5/12
Draw the figure, see image attached
Using pythagorean theorem, we find the length of the hypotenuse is 13
sin α = side in front of the angle / hypotenuse
sin α = -12/13
cos α = side adjacent to the angle / hypotenuse
cos α = -5/13
Determine ratio of ∠β
sin β = -1/2
sin β = sin 210° (third quadrant)
β = 210°
![cos \beta = -\frac{1}{2} \sqrt{3}](https://tex.z-dn.net/?f=cos%20%5Cbeta%20%3D%20-%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%7B3%7D%20)
SECOND PARTSolve the questions
Find sin (α + β)
sin (α + β) = sin α cos β + cos α sin β
![sin( \alpha + \beta )=(- \frac{12}{13} )( -\frac{1}{2} \sqrt{3})+( -\frac{5}{13} )( -\frac{1}{2} )](https://tex.z-dn.net/?f=sin%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28-%20%5Cfrac%7B12%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%7B3%7D%29%2B%28%20-%5Cfrac%7B5%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%29%20)
![sin( \alpha + \beta )=(\frac{12}{26}\sqrt{3})+( \frac{5}{26} )](https://tex.z-dn.net/?f=sin%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B12%7D%7B26%7D%5Csqrt%7B3%7D%29%2B%28%20%5Cfrac%7B5%7D%7B26%7D%20%29)
![sin( \alpha + \beta )=(\frac{5+12\sqrt{3}}{26})](https://tex.z-dn.net/?f=sin%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B5%2B12%5Csqrt%7B3%7D%7D%7B26%7D%29)
Find cos (α - β)
cos (α - β) = cos α cos β + sin α sin β
![cos( \alpha + \beta )=(- \frac{5}{13} )( -\frac{1}{2} \sqrt{3})+( -\frac{12}{13} )( -\frac{1}{2} )](https://tex.z-dn.net/?f=cos%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28-%20%5Cfrac%7B5%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%29%2B%28%20-%5Cfrac%7B12%7D%7B13%7D%20%29%28%20-%5Cfrac%7B1%7D%7B2%7D%20%29)
![cos( \alpha + \beta )=(\frac{5}{26} \sqrt{3})+( \frac{12}{26} )](https://tex.z-dn.net/?f=cos%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B5%7D%7B26%7D%20%5Csqrt%7B3%7D%29%2B%28%20%5Cfrac%7B12%7D%7B26%7D%20%29)
![cos( \alpha + \beta )=(\frac{5\sqrt{3}+12}{26} )](https://tex.z-dn.net/?f=cos%28%20%5Calpha%20%2B%20%5Cbeta%20%29%3D%28%5Cfrac%7B5%5Csqrt%7B3%7D%2B12%7D%7B26%7D%20%29)
Find tan (α - β)
![tan( \alpha - \beta )= \frac{ tan \alpha-tan \beta }{1+tan \alpha tan \beta }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20tan%20%5Calpha-tan%20%5Cbeta%20%7D%7B1%2Btan%20%5Calpha%20%20tan%20%5Cbeta%20%7D)
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{1+(\frac{5}{12}) ( \frac{1}{2} \sqrt{3})}](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%20%20%20%7D%7B1%2B%28%5Cfrac%7B5%7D%7B12%7D%29%20%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%29%7D)
Simplify the denominator
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{1+(\frac{5\sqrt{3}}{24})}](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%20%20%20%7D%7B1%2B%28%5Cfrac%7B5%5Csqrt%7B3%7D%7D%7B24%7D%29%7D)
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{1}{2} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Csqrt%7B3%7D%20%7D%7B%20%5Cfrac%7B24%2B5%5Csqrt%7B3%7D%7D%7B24%7D%20%7D)
Simplify the numerator
![tan( \alpha - \beta )= \frac{ \frac{5}{12} - \frac{6}{12} \sqrt{3} }{ \frac{24+5\sqrt{3}}{24} }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5%7D%7B12%7D%20-%20%5Cfrac%7B6%7D%7B12%7D%20%5Csqrt%7B3%7D%20%7D%7B%20%5Cfrac%7B24%2B5%5Csqrt%7B3%7D%7D%7B24%7D%20%7D)
![tan( \alpha - \beta )= \frac{ \frac{5-6\sqrt{3}}{12} }{ \frac{24+5\sqrt{3}}{24} }](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%5Cfrac%7B%20%5Cfrac%7B5-6%5Csqrt%7B3%7D%7D%7B12%7D%20%7D%7B%20%5Cfrac%7B24%2B5%5Csqrt%7B3%7D%7D%7B24%7D%20%7D)
Simplify the fraction
![tan( \alpha - \beta )= (\frac{5-6\sqrt{3}}{12} })({ \frac{24}{24+5\sqrt{3}})](https://tex.z-dn.net/?f=tan%28%20%5Calpha%20-%20%5Cbeta%20%29%3D%20%28%5Cfrac%7B5-6%5Csqrt%7B3%7D%7D%7B12%7D%20%7D%29%28%7B%20%5Cfrac%7B24%7D%7B24%2B5%5Csqrt%7B3%7D%7D%29)
Answer:
1. D
Step-by-step explanation:
Since y is less than x by 7 times
![\frac{x}{7}=y](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7B7%7D%3Dy%20)
so in terms of x we write
x=7y
Answer:
A. {-4, -3, 7, 8}
Step-by-step explanation:
The ordered pairs representing a function are always written ...
(input, output)
<h3>Inputs</h3>
The set of inputs for the given function is the list of first-numbers of the ordered pairs. Those numbers are -3, -4, 8, 7. When we express them as a set, we like to have the elements of the set in increasing order:
inputs = {-4, -3, 7, 8} . . . . . . matches the first choice