determine the mode for the following set of test scores: 63, 70, 75, 80, 85, 85, 85, 92, 92, 95, 99. (a.92) (b.85) (c.84) (d.83)
Alenkasestr [34]
The mode is the score that occurs the most
Here it is 85
Choice B
A pyramid is regular if its base is a regular polygon, that is a polygon with equal sides and angle measures.
(and the lateral edges of the pyramid are also equal to each other)
Thus a regular rectangular pyramid is a regular pyramid with a square base, of side length say
x.
The lateral faces are equilateral triangles of side length
x.
The lateral surface area is 72 cm^2, thus the area of one face is 72/4=36/2=18 cm^2.
now we need to find
x. Consider the picture attached, showing one lateral face of the pyramid.
by the Pythagorean theorem:

thus,

thus:

(cm^2)
but

is exactly the base area, since the base is a square of sidelength =
x cm.
So, the total surface area = base area + lateral area =

cm^2
Answer:

cm^2
Answer:
dats alot there shortie, anyways...how you doing and if you answer this...i have sum you might like to hear
Step-by-step explanation:
B.30
cause 60 is 30 halted so yeah
Answer:
The test statistics is
The p-value is 
Step-by-step explanation:
From the question we are told
The West side sample size is 
The number of residents on the West side with income below poverty level is 
The East side sample size 
The number of residents on the East side with income below poverty level is 
The null hypothesis is 
The alternative hypothesis is 
Generally the sample proportion of West side is

=> 
=> 
Generally the sample proportion of West side is

=> 
=> 
Generally the pooled sample proportion is mathematically represented as

=> 
=> 
Generally the test statistics is mathematically represented as
![z = \frac{\^ {p}_1 - \^{p}_2}{\sqrt{p(1- p) [\frac{1}{n_1 } + \frac{1}{n_2} ]} }](https://tex.z-dn.net/?f=z%20%3D%20%5Cfrac%7B%5C%5E%20%7Bp%7D_1%20-%20%5C%5E%7Bp%7D_2%7D%7B%5Csqrt%7Bp%281-%20p%29%20%5B%5Cfrac%7B1%7D%7Bn_1%20%7D%20%2B%20%5Cfrac%7B1%7D%7Bn_2%7D%20%20%5D%7D%20%20%7D)
=>
=>
Generally the p-value is mathematically represented as

From z-table
So
