1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
3 years ago
8

Water is flowing out of a conical funnel through its apex at a rate of 12 cubic inches per minute. If the tunnel is initially fu

ll, how long will it take for it to be one-third full? What is the height of the water level? Assume the radius to be 3 inches and the altitude of the cone to be 4 inches.

Mathematics
1 answer:
Lilit [14]3 years ago
4 0
Check the picture below.

so, bearing in mind that, the radius and height are two sides in a right-triangle, thus both are at a ratio of each other, thus the radius is at 3:4 ratio in relation to the height.

\bf \textit{volume of a cone}\\\\
V=\cfrac{\pi r^2 h}{3}\quad 
\begin{cases}
r=3\\
h=4
\end{cases}\implies \stackrel{full}{V}=\cfrac{\pi \cdot 3^2\cdot 4}{3}\implies \stackrel{full}{V}=12\pi 
\\\\\\
\stackrel{\frac{2}{3}~full}{V}=12\pi \cdot \cfrac{2}{3}\implies \stackrel{\frac{2}{3}~full}{V}=8\pi ~in^3
\\\\\\
\textit{is draining water at a rate of }12~\frac{in^3}{min}\qquad \cfrac{8\pi ~in^3}{12~\frac{in^3}{min}}\implies \cfrac{2\pi }{3}~min

\bf \textit{it takes }\frac{2\pi }{3}\textit{ minutes to drain }\frac{2}{3}\textit{ of it, leaving only }\frac{1}{3}\textit{ in it}\\\\
-------------------------------\\\\
\stackrel{\frac{1}{3}~full}{V}=12\pi \cdot \cfrac{1}{3}\implies \stackrel{\frac{1}{3}~full}{V}=4\pi\impliedby \textit{what's \underline{h} at this time?}
\\\\\\
V=\cfrac{\pi r^2 h}{3}\quad 
\begin{cases}
r=\frac{3h}{4}\\
V=4\pi 
\end{cases} \implies 4\pi =\cfrac{\pi \left( \frac{3h}{4} \right)^2 h}{3}

\bf 12\pi =\cfrac{\pi \cdot 3^2h^2 h}{4^2}\implies 12\pi =\cfrac{9\pi h^3}{16}\implies \cfrac{192\pi }{9\pi }=h^3
\\\\\\
\sqrt[3]{\cfrac{192\pi }{9\pi }}=h\implies \sqrt[3]{\cfrac{64}{3}}=h\implies \cfrac{4}{\sqrt[3]{3}}=h
\\\\\\
\cfrac{4}{\sqrt[3]{3}}\cdot \cfrac{\sqrt[3]{3^2}}{\sqrt[3]{3^2}}=h\implies \cfrac{4\sqrt[3]{9}}{\sqrt[3]{3^3}}=h\implies \cfrac{4\sqrt[3]{9}}{3}=h

You might be interested in
The heights of two similar parallelograms are 16 inches and 20 inches. Their
Fittoniya [83]

Answer: x=\dfrac{25}{21}

Step-by-step explanation:

Area of parallelogram = Base x height

If two parallelograms are similar, then their corresponding sides are proportional.

That means, \dfrac{\text{Area of first parallleogram}}{\text{Area of second parallleogram}}=\dfrac{\text{height of first parallelogram}}{\text{height of second parallelogram}}

\Rightarrow \dfrac{3x+5}{9x}=\dfrac{16}{20}\Rightarrow \dfrac{3x+5}{9x}=\dfrac{4}{5}\\\\\Rightarrow 5(3x+5)=4(9x)\\\\\Rightarrow\ 15x+25 = 36x\\\\\Rightarrow\ 36x-15x=25\\\\\Rightarrow\ 21x = 25\\\\\Rightarrow\ x=\dfrac{25}{21}

Hence, x=\dfrac{25}{21}

3 0
3 years ago
If x ≥ 0, then x + |x| = ?
oee [108]

Answer:

x + |x| = 2x

Step-by-step explanation:

if the number is more than 0 or greater, then if you add it to itself, it will be equal to the value of two of the previous number. Hope this helps

8 0
3 years ago
consider this quadratic equation x2+2x+7=21 the nuber of positive solutions to this equation are blank. the approximate value of
S_A_V [24]

Answer:

<em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>7</u></em><em><u>-</u></em><em><u>2</u></em><em><u>1</u></em><em><u>=</u></em><em><u>0</u></em>

<em><u> </u></em><em><u> </u></em><em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>-</u></em><em><u>1</u></em><em><u>4</u></em><em><u>. </u></em><em><u> </u></em><em><u>=</u></em><em><u>0</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>. </u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>4</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>x²</u></em><em><u>+</u></em><em><u>2</u></em><em><u>x</u></em><em><u>+</u></em><em><u>1</u></em><em><u>. </u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>4</u></em><em><u>+</u></em><em><u>1</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>(</u></em><em><u>X+</u></em><em><u>1</u></em><em><u>)</u></em><em><u>²</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>1</u></em><em><u>5</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>X+</u></em><em><u>1</u></em><em><u>. </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>+</u></em><em><u>/</u></em><em><u>-</u></em><em><u>√</u></em><em><u>1</u></em><em><u>5</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>X=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>+</u></em><em><u>/</u></em><em><u>-</u></em><em><u>√</u></em><em><u>1</u></em><em><u>5</u></em>

<em><u>X=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>+</u></em><em><u>3.872983346207</u></em>

<em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>2.872983346207</u></em><em><u>(</u></em><em><u>greate</u></em><em><u>st</u></em><em><u> </u></em><em><u>sol</u></em><em><u>ution</u></em><em><u>)</u></em><em><u> round</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>possible</u></em>

<em><u>X=</u></em><em><u>-</u></em><em><u>1</u></em><em><u>-</u></em><em><u>3.872983346207</u></em>

<em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u>=</u></em><em><u>-</u></em><em><u>4.872983346207</u></em>

6 0
3 years ago
Help me please????help
kari74 [83]
Yo I need help I’m in the 8th grade help me with this pls
4 0
3 years ago
Mayumi plans to buy pencils and a notebook at the school store. A pencil costs $0.15, and a The notebook costs $1.59. Mayumi has
Elina [12.6K]

Answer: 0.15p+1.59n ≤ 5.00

Step-by-step explanation:

Given: A pencil costs $0.15, and a The notebook costs $1.59.

Let p = Number of pencils.

n = Number of notebooks.

Total cost of pencil and notebook = 0.15p+1.59n

Since Mayumi has $5.00.

So, Total cost of pencil and notebook ≤ $5.00

⇒ 0.15p+1.59n ≤ 5.00

Hence, the required inequality: 0.15p+1.59n ≤ 5.00

3 0
3 years ago
Other questions:
  • Darryl left the White House and traveled toward the ferry office at an average speed of 25 mph. Some time later Jacob left trave
    6·1 answer
  • Martin measure the links of five shoes in his closet there links were 10.252 inches, 9.894 inches, 10.455 inches, 9.5 to 7", and
    6·1 answer
  • What is <br>1/3 + 3/9<br><br>1/3 + 3/9=?
    14·2 answers
  • A hovercraft takes off from a platform. Its height (in meters), xx seconds after takeoff, is modeled by: h(x)=-2x^2+20x+48h(x)=?
    6·2 answers
  • First three common multiple of 20 and 25
    8·2 answers
  • What is the measure of angle 1
    5·2 answers
  • Find the quotient and any excluded values.<br><br> (x + 5/x^2 + 9x + 20)/(x^2-16/x-4)
    10·1 answer
  • The number of grams in 17 kilograms
    11·1 answer
  • Last math question for today!!!!​
    6·1 answer
  • Use the table to work out the values of a , b , c , and d .​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!