Answer:
Total number of tablets needs to discharge = 240 tables
Step-by-step explanation:
Given:
Number of days tablet need = 30 days
Number of times per days need = 4 times
Number of tablet per time = 2 tablet
Find:
Total number of tablets needs to discharge = ?
Computation:
⇒ Total number of tablets needs to discharge = Number of days tablet need × Number of times per days need × Number of tablet per time
⇒ Total number of tablets needs to discharge = 30 × 4 × 2
⇒ Total number of tablets needs to discharge = 240 tables
Answer:
9x² − 12x + 4
Step-by-step explanation:
A perfect square trinomial:
a² + 2ab +b²= (a + b)²
a² - 2ab +b²= (a - b)²
9x² − 12x + 4 = (3x)² - 2*(3x)*2 + 2² = (3x - 2)²
36b² − 24b + 16
16x² − 24x − 9
4a² − 10a − 25
The answer is the third option which is AEF and FED, AEG and CEG
0^9 +7x+189yx−3y
o
9
+7x−3y
9
+7x+3y
9
−7x−3y
9
−7x+3y
9
+7x+189yx−3y
2 Collect like terms.
{o}^{9}+(7x+7x-7x-7x+7x)+(-3{y}^{9}+3{y}^{9}-3{y}^{9}+3{y}^{9})+189yx-3y
o
9
+(7x+7x−7x−7x+7x)+(−3y
9
+3y
9
−3y
9
+3y
9
)+189yx−3y
3 Simplify.
{o}^{9}+7x+189yx-3y
o
9
+7x+189yx−3y
2 times (9+7) is correct.
9 + 7 = 16.
16 multiplied by 2 is 32.