Answer:
I1 = 2/5 M1 R^2 for a sphere about its center
I2 = 2/5 M2 (2 R)^2 = 2/5 M2 R^ * 4 = 8/5 M2 R^2
Remember that M2 is greater than M1 by a factor 0f 2^3 = 8
Then I2 exceeds I1 by a factor of 32
Answer:
KE = KE (incidental) - KE of emitted photons
or KE = h * f - Wf
So h * f = KE + Wf = 1.2 + 1.88 = 3.08 incident energy
If you double the frequency then h * f = 6.16
KE = 6.16 - 1.2 = 4.96 eV
<u>Answer:</u> The velocity of released alpha particle is 
<u>Explanation:</u>
According to law of conservation of momentum, momentum can neither be created nor be destroyed until and unless, an external force is applied.
For a system:

where,
= Initial mass and velocity
= Final mass and velocity
We are given:

Putting values in above equation, we get:

Hence, the velocity of released alpha particle is 
See this. I hope you find your answer
Answer:
If it is moving 34 m/s it will take 100 seconds, or 1:40 to reach 3400 meters.
Explanation:
I found this answer by dividing 3400 by 34 and converting seconds to minutes