B, gossiping is unproessional
The question is incomplete. The complete question is :
To measure the effective coefficient of friction in a bone joint, a healthy joint (and its immediate surroundings) can be removed from a fresh cadaver. The joint is inverted, and a weight is used to apply a downward force F⃗ d on the head of the femur into the hip socket. Then, a horizontal force F⃗ h is applied and increased in magnitude until the femur head rotates clockwise in the socket. The joint is mounted in such a way that F⃗ h will cause clockwise rotation, not straight-line motion to the right. The friction force will point in a direction to oppose this rotation.
Draw vectors indicating the normal force n⃗ (magnitude and direction) and the frictional force f⃗ f (direction only) acting on the femur head at point A.
Assume that the weight of the femur is negligible compared to the applied downward force.
Draw the vectors starting at the black dot. The location, orientation and relative length of the vectors will be graded
Solution :
The normal force represented by N is equal to the downward force, which is equal in magnitude but it is opposite in direction.
Also the frictional force acts always to oppose the motion because the bone starts moving in a clockwise direction. The frictional force that will be applied to the right direction so that the movement or the rotation at A is opposed.
Answer:
The acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
Explanation:
given information:
h =9.8
t =1 s
g = 9.8
the average speed
v = 1/2 gt²
= 1/2 (9.8) (1)²
= 4.8 m/s
the distance in 1s
h = v t
= 4.8 (1)
= 4.8 m
the acorn hasn't hit the ground because it only falsl half of the branch distance from the ground
=
Answer:
Gravitational force. Magnetic force. Electrostatics. Nuclear force.
Explanation:
Apple falling from a tree
raindrops falling from the sky