1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
12

If a particular atom of an element has five protons a neutral atom of this element would have ________ electrons. A. 0 B. 3 C. 5

D. 8
Physics
2 answers:
Bezzdna [24]3 years ago
5 0
C. 5

a neutral atom has no electrical charge. protons are positive and electrons are negative, they need to be the same to make it a neutral atom.
Ierofanga [76]3 years ago
5 0
Proton = Electron. So the answer is 5
You might be interested in
Who was the carthaginian general who used elephants to cross the alps in the second punic war
goldfiish [28.3K]
<span>the answer is Hannibal</span>
3 0
3 years ago
Read 2 more answers
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
The rest deltoid row is a back exercise true or false
bixtya [17]
False because your deltoids are in your shoulders not your back
3 0
3 years ago
What can you tell from comparing these waves? Please help
elena-s [515]

Answer:

Explanation:

A

5 0
3 years ago
Read 2 more answers
Steam is leaving a 4-L pressure cooker whose operating pressure is 150 kPa. It is observed that the amount of liquid in the cook
jeka57 [31]

Answer: a) Mr = 2.4×10^-4kg/s

V = 34.42m/a

b) E = 173J

Ø = 2693.1J

c) Er = 0.64J/s

Explanation: Please find the attached file for the solution

3 0
4 years ago
Other questions:
  • A point charge is at the origin. With this point charge as the source point, what is the unit vector r^ in the direction of (a)
    13·1 answer
  • What did nicolaus copernicus discover about the universe
    12·1 answer
  • What factor determines how long a star lives?
    6·2 answers
  • Need help true or false ? ECON
    6·1 answer
  • Do electric lights in some electronic devices change electricity into motion
    5·1 answer
  • Select the volume units that are greater than one liter.
    7·2 answers
  • At what distance will a 80 W lightbulb have the same apparent brightness as a 120 W bulb viewed from a distance of 40 m
    11·1 answer
  • Calculate the impulse imparted when a 3,000-kg car hits a wall at 60 . m/s and comes to a stop.
    6·1 answer
  • High-speed stroboscopic photographs show that the head of a 180 g golf club is traveling at 47 m/s just before it strikes a 46 g
    5·2 answers
  • A motorcyclist drove 7 km at 57km/h and then another 7 km at 81 km/h. What was the average speed? ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!