Factors of 27 are 1, 3, 9, 27.
She can make 5 rectangular prisms os sizes 1 x 1 x 27 or 1 x 3 x 9 or 1 x 9 x 3 or 3 x 3 x 3 or 3 x 9 x 1
Answer:
O.1% of 203.75 million is 0.20375.
Assume a is not divisible by 10. (otherwise the problem is trivial).
<span>Define R(m) to be the remainder of a^m when divided by 10. </span>
<span>R can take on one of 9 possible values, namely, 1,2,...,9. </span>
<span>Now, consider R(1),R(2),......R(10). At least 2 of them must have the sames value (by the Pigeonhole Principle), say R(i) = R(j) ( j>i ) </span>
<span>Then, a^j - a^i is divisible by 10.</span>
Answer:
(22, - 24)
Step-by-step explanation:
Multiply the first equation by -5 to make the y's so you can add the up to zero.
-5(2x + y = 20)
-10x - 5y = -100 Add the second equation thn solve for x
<u> 6x + 5y = 12 </u>
-4x = -88
x = 22
Plug 22 in for x in either equation
2x + y = 20
2 (22) + y = 20
44 + y = 20
y = -24
Answer:
<em>1</em><em>2</em>
Step-by-step explanation:
<em>here's</em><em> your</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>area </em><em>of </em><em>rectangle</em><em> </em><em>=</em><em> </em><em>length</em><em>*</em><em>width</em>
<em>=</em><em>></em><em> </em><em>area </em><em>4</em><em>*</em><em>3</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>.</em><em>s</em><em>q</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em>=</em><em>></em><em> </em><em>area </em><em>of </em><em>square</em><em> </em><em>=</em><em> </em><em>side^</em><em>2</em><em> </em>
<em>=</em><em>></em><em> </em><em>area </em><em>=</em><em> </em><em>1</em><em>.</em><em>s</em><em>q</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em>=</em><em>></em><em> </em><em>Number</em><em> of</em><em> </em><em>square</em><em> </em><em>=</em><em> </em><em>area</em><em> of</em><em> rectangle</em><em>/</em><em>area</em><em> of</em><em> </em><em>square</em><em> </em>
<em>=</em><em>></em><em> </em><em>n</em><em>o </em><em>of </em><em>square</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>/</em><em>1</em>
<em> </em><em> </em><em>=</em><em>></em><em>. </em><em>1</em><em>2</em><em> </em>