Answer: infinite solutions
Step-by-step explanation: any value of d makes the equation true. By simplifying the right side, we get -d + 4, which is the same as 4 - d, so we essentially get 4 - d = 4 - d.
Answer:
2π - 4√5
(= -2.66 to nearest hundredth).
Step-by-step explanation:
√(2π - 4√5)^2
= 2π - 4√5 (by the definition of a square root)
If you want an approximate value it is
-2.66 to the nearest hundredth
5
Answer:
1050
Step-by-step explanation:
Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.
There is a easier method.
<em>E.g</em><em>:</em><em> </em><em> </em><em>Natural</em><em> </em><em>N</em><em>umbers</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>N</em><em>t</em><em>h</em><em> </em><em>Number</em><em>.</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>adding</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Nth</em><em> </em><em>Numbers</em><em> </em><em> </em><em>to a</em><em> </em><em>multiple</em><em> </em><em>of</em><em> </em><em>that</em><em> </em><em>Nth</em><em> </em><em>Term</em><em>.</em><em> </em><em>For</em><em> </em><em>example</em><em>,</em><em> </em><em>let</em><em> </em><em>say</em><em> </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>numbers</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em>.</em><em> </em><em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em>4</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>4</em><em>/</em><em>2</em><em>=</em><em>2</em><em>.</em><em> </em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>Nth</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em> </em><em>to</em><em> </em><em>4</em><em>.</em><em> </em><em>4</em><em>+</em><em>2</em><em>=</em><em>6</em><em>.</em><em> </em><em>And</em><em> </em><em>6</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>6</em><em>/</em><em>2</em><em>=</em><em>3</em><em>.</em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>call</em><em> </em><em>this</em><em> </em><em>a</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em>.</em><em> </em><em>A</em><em> </em><em>series</em><em> </em><em>which</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>pattern</em><em> </em><em>of</em><em> </em><em>adding</em><em> </em><em>a</em><em> </em><em>common</em><em> </em><em>difference</em>
<em>Back</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>problem</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em> </em><em>formula</em><em>,</em>
<em>
</em>
<em>Where</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>in</em><em> </em><em> </em><em>our</em><em> </em><em>sequence</em><em>.</em><em> </em><em>Z1</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>fist</em><em> </em><em>term</em><em> </em><em>of</em><em> </em><em>our</em><em> </em><em>series</em><em>.</em><em> </em><em> </em><em>ZN</em><em> </em><em>is</em><em> </em><em>our</em><em> </em><em>last</em><em> </em><em>term</em><em>.</em><em> </em><em>And</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em>
<em>The</em><em> </em><em>first</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>being</em><em> </em><em>added</em><em> </em><em>is</em><em> </em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>1</em><em>0</em><em>0</em><em>/</em><em>5</em><em>=</em><em>2</em><em>0</em><em>.</em><em> </em><em>The</em><em> </em><em>last</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>.</em>
<em>
</em>
<em>
</em>
<em>
</em>
Answer:
x 8 = 13.8564064606
Step-by-step explanation: The main diagonal of any cube can be found by multiplying the length of one side by the square root of 3 (
). Therefore, square root 3 (
) is multiplied by the length (8 in our case) of either 6 faces of the cube.
Hope it helped!