Yes, because it would be like shoving something into a crowed place, rather than shoving something into a uncrowded place.<span />
Whenever the sperm and the egg combine, it is possible for one or the other to not split properly and bring 2 of the chromosomes instead of just 1
Answer:
The probability that the child will have type blood B equals <u>3/16</u>.
Explanation:
<u>Available data:</u>
- Individuals with the rare Bombay blood phenotype lack both the A and B antigens in individuals and/or are of hh genotype.
- Cross between two parents that are both of I A I B Hh genotype
Cross: IAIB Hh x IAIB Hh
Gametes) IAH, IAh, IBH, IBh
IAH, IAh, IBH, IBh
Punnett square) IAH IAh IBH IBh
IAH IAIAHH IAIAHh IAIBHH IAIBHh
IAh IAIAHh IAIAhh IAIBHh IAIBhh
IBH IAIBHH IAIBHh IBIBHH IBIBHh
IBh IAIBHh IAIBhh IBIBHh IBIBhh
F1) Genotype
- 1/16 IAIA HH
- 2/16 IAIAHh
- 1/16 IAIAhh
- 2/16 IAIBHH
- 4/16 IAIBHh
- 2/16 IAIBhh
- 1/16 IBIBHH
- 2/16 IBIBHh
- 1/16 IBIBhh
Phenotype
- 3/16 Blood type A
- 6/16 Blood type AB
- 3/16 Blood type B
- 3/16 Blood type 0
Yes! We can see which are dominant!
In this first generation progeny, we see that stripes are dominant and spots are recessive. And white bodies are dominant over orange!
I am a bit rusty on genetics, but I believe I am correct