Answer:
a
Step-by-step explanation:
Answer:
hmmmm.... sorry but i really dont know this yet
Step-by-step explanation:
Answer:
the angle between their paths is <em>100.8°</em>
Step-by-step explanation:
From the given information, you can construct a triangle, just like the one in the figure.
We will use the <em>Cosine Rule</em> which is:
c² = b² + a² - 2 b c cos(θ)
where
- c = 16 miles
- b = 8 miles
- a = 12 miles
Therefore,
2 b c cos(θ) = b² + a² - c²
cos(θ) = (b² + a² - c²) / 2 b c
θ = cos⁻¹( (b² + a² - c²) / (2 b c) )
θ = cos⁻¹( (8² + 12² - 16²) / 2(8)(16) )
<em>θ = 100.8°</em>
<em></em>
Therefore, the angle between their paths is <em>100.8°</em>
I'm guessing this is a slope problem, so the equation would be like this: y = mx + b where m is the slope and b is the y-intercept.

Using this,

Which is equal to,
Answer:
a.
and 41.6
b. 52.1
Step-by-step explanation:
a.
Considering the left side triangle the blue dotted side is the side "opposite" to the angle given and the side 24 is the side that is "adjacent" to the angle given. The trigonometric ratio tan relates opposite to adjacent. Also, let the blue dotted side be y.
<u>Note:</u> the exact value of tan 60 is 
Thus, we can write 
Approximate value (rounded to nearest tenth): 
b.
Considering the triangle to the right, the side "opposite" to the angle given (53 degrees) is 41.6 (just found in part (a)) and the side "hypotenuse" (side opposite to 90 degree angle) is x. The trigonometric ratio sine relates opposite and hypotenuse.
Thus we can write and solve:
