Answer:
x > 10
Step-by-step explanation:
I don't know what method is referred to in "section 4.3", but I'll suppose it's reduction of order and use that to find the exact solution. Take

, so that

and we're left with the ODE linear in

:

Now suppose

has a power series expansion



Then the ODE can be written as


![\displaystyle\sum_{n\ge2}\bigg[n(n-1)a_n-(n-1)a_{n-1}\bigg]x^{n-2}=0](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Csum_%7Bn%5Cge2%7D%5Cbigg%5Bn%28n-1%29a_n-%28n-1%29a_%7Bn-1%7D%5Cbigg%5Dx%5E%7Bn-2%7D%3D0)
All the coefficients of the series vanish, and setting

in the power series forms for

and

tell us that

and

, so we get the recurrence

We can solve explicitly for

quite easily:

and so on. Continuing in this way we end up with

so that the solution to the ODE is

We also require the solution to satisfy

, which we can do easily by adding and subtracting a constant as needed:
Answer:
<h3>
Acute Angles: ∠TLS, ∠SLT, ∠ULR</h3><h3>
Right Angles: ---------</h3><h3>
Obtuse Angles: ∠RLT, ∠SLU, ∠ULS,</h3><h3>
Straight Angles: ∠RLS, ∠TLU </h3><h3>
Not angles: ∠TRL </h3>
Step-by-step explanation:
The lines intersect at point L, so all angles have a vertex (middle letter) L so there is no angle TRL
Straight angle is a line with dot-vertex, so the straight angles are ∠RLS and ∠TLU.
∠TLS is less than 90° then it is acute angle (∠SLT is the same angle). ∠ULR is vertex angle to ∠TLS, so it's also acute angle.
Two angles adding to straight angle mean that they are both right angles or one is acute and the second is obtuse. ∠TLS is acute so ∠RLT is obtuse (they adding to ∠RLS) and ∠SLU is obtuse (they adding to ∠TLU). ∠ULS is the same angle as ∠SLU.
Answer:
53/36
Step-by-step explanation:
56/36 is already in it's simplest form