Answer:
x = 2
Step-by-step explanation:
2x2=4
4+2=6
6=6
There hope that is what you are looking for
Let Home runs = X
Triples would be X-3 ( 3 less triples than home runs)
Doubles would be 3x ( 3 times as many doubles as home runs)
Singles would be 45(x-3) ( 45 times as many singles as triples)
Simplify the equation for singles to be 45x-153
Now you have X + x-3 + 3x + 4x-135 = 262
Simplify:
50x - 138 = 262
Add 138 to both sides:
50x = 400
Divide both sides by 50:
x = 400/50
x = 8
Home runs = x = 8
Triples = x-3 = 8-3 = 5
Doubles = 3x = 3(8) = 24
Singles = 45(x-3) = 45(8-3) = 45(5) = 225
Answer:
D
Step-by-step explanation:
1+2+2+3+3+3+4+5+6+6+7+7+7+8+9=73
73/15≈5
The answer would be A. When using Cramer's Rule to solve a system of equations, if the determinant of the coefficient matrix equals zero and neither numerator determinant is zero, then the system has infinite solutions. It would be hard finding this answer when we use the Cramer's Rule so instead we use the Gauss Elimination. Considering the equations:
x + y = 3 and <span>2x + 2y = 6
Determinant of the equations are </span>
<span>| 1 1 | </span>
<span>| 2 2 | = 0
</span>
the numerator determinants would be
<span>| 3 1 | . .| 1 3 | </span>
<span>| 6 2 | = | 2 6 | = 0.
Executing Gauss Elimination, any two numbers, whose sum is 3, would satisfy the given system. F</span>or instance (3, 0), <span>(2, 1) and (4, -1). Therefore, it would have infinitely many solutions. </span>