The ODE is linear:


Multiplying both sides by
gives

Notice that the left side can be condensed as the derivative of a product:

Integrating both sides with respect to
yields


Since
,

so that

The value of x from the given triangle is 32√3/3
<h3>SOH CAH TOA identity</h3>
In order to determine the value of x, first we need to determine the hypotenuse side of the smaller triangle.
sin 60 = 8√2/H
H = 8√2/sin60
H = 8√2 * 2/√3
H = 16√2/√3
H = 16√6/3
For the value of x, we will use the expression
sin45 = (16√6/3)/x
1/√2 = 16√6/3x
3x = 16√12
3x = 32√3
x = 32√3/3
Hence the value of x from the given triangle is 32√3/3
Learn more on SOH CAH TOA here: brainly.com/question/20734777
#SPJ1
$16.68 is the most expensive item you can order with $20.00
Answer:
First solve the equation:
6x^2 + 8x -28 = 2x^2 + 4
=> 6x^2 - 2x^2 + 8x - 28 -4 = 0 => 4x^2 + 8x - 32 = 0
Extract common factor 4:
=> 4[x^2 + 2x - 8] = 0
Now factor the polynomial:
4(x + 4) (x - 2) = 0
=> the solutions are x + 4 = 0 => x = -4, and x - 2 = 0 => x = 2.
So the answer is the option B: 4(x + 4)(x - 2); {-4, 2}
HOPE THIS HELPS! :D

<h3><u>Given </u><u>:</u><u>-</u></h3>
- We have given the coordinates of the triangle PQR that is P(-4,6) , Q(6,1) and R(2,9)
<h3><u>To</u><u> </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>calculate </u><u>the </u><u>length </u><u>of </u><u>the </u><u>sides </u><u>of </u><u>given </u><u>triangle </u><u>and </u><u>also </u><u>we </u><u>have </u><u>to </u><u>determine </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not </u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
<u>Here</u><u>, </u><u> </u><u>we </u><u>have </u>
- Coordinates of P =( x1 = -4 , y1 = 6)
- Coordinates of Q = ( x2 = 6 , y2 = 1 )
- Coordinates of R = ( x3 = 2 , y3 = 9 )
<u>By </u><u>using </u><u>distance </u><u>formula </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u><u>:</u><u>-</u>
Length of side PQ






Length of QR





Length of RP





<h3><u>Now</u><u>, </u></h3>
We have to determine whether the triangle PQR is right angled triangle
<h3>Therefore, </h3>
<u>By </u><u>using </u><u>Pythagoras </u><u>theorem </u><u>:</u><u>-</u>
- Pythagoras theorem states that the sum of squares of two sides that is sum of squares of 2 smaller sides of triangle is equal to the square of hypotenuse that is square of longest side of triangle
<u>That </u><u>is</u><u>, </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>,</u>


<u>From </u><u>above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
- The triangle PQR is not a right angled triangle because 205 ≠ 45 .