Answer:
V = 12.5 L
Explanation:
Given data:
Volume of NO = 15.0 L
Temperature and pressure = standard
Volume of nitrogen gas produced = ?
Solution:
Chemical equation:
6NO + 4NH₃ → 5N₂ + 6 H₂O
Number of moles of NO:
PV = nRT
n = PV/RT
n = 1 atm × 15.0 L / 0.0821 atm.L /mol.K × 273.15 K
n = 15.0 atm.L / 22.43 atm.L /mol
n = 0.67 mol
now we will compare the moles of No and nitrogen gas.
NO : N₂
6 : 5
0.67 : 5/6×0.67 = 0.56
Volume of nitrogen gas:
PV = nRT
1 atm × V = 0.56 mol × 0.0821 atm.L /mol.K × 273.15 K
V = 12.5 atm.L / 1 atm
V = 12.5 L
Elements from 57 to 71 are Lanthanoids and from 89 to 103 are Actinoids. Simply I would say Actinoids have less similarity in chemical properties than Lanthanoids. On the other hands, Actinoids have randomized chemical strutural bonds.
The density of the liquid is about 1.85 g/mL.
Density is mass/volume. The volume is given (45.2 mL). The mass must be found by subtracting the tare weight of the graduated cylinder from the total:
95.1 g- 11.4g = 83.7g
Using the mass and volume of the liquid, you can now calculate the density:
d = m/v = 83.7g/45.2 mL = 1.8517699115 g/mL.
Of the original values, the least number of significant figures are 3, so the answer must have a degree of accuracy of 3 significant figures:
1.8517699115 g/mL ≈ 1.85 g/mL.
<u>Answer:</u> The expression of
for calcium fluoride is ![K_{sp}=[Ca^{2+}][2F^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5B2F%5E-%5D%5E2)
<u>Explanation:</u>
Solubility product is defined as the product of concentration of ions present in a solution each raised to the power its stoichiometric ratio.
The given chemical equation follows:

1 mole of calcium fluoride produces 1 mole of calcium ions and 2 moles of fluorine ions.
The expression of
for above equation follows:
![K_{sp}=[Ca^{2+}][2F^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5B2F%5E-%5D%5E2)
Hence, the expression of
for calcium fluoride is ![K_{sp}=[Ca^{2+}][2F^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5B2F%5E-%5D%5E2)