Check the picture below.
now, you can pretty much count the units off the grid for the segments ST and RU, so each is 7 units long, and are parallel, meaning that the other two segments are also parallel, and therefore the same length each.
so we can just find the length for hmmmm say SR, since SR = TU, TU is the same length,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ S(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad R(\stackrel{x_2}{-5}~,~\stackrel{y_2}{5})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ SR=\sqrt{[-5-(-2)]^2+[5-1]^2}\implies SR=\sqrt{(-5+2)^2+(5-1)^2} \\\\\\ SR=\sqrt{(-3)^2+4^2}\implies SR=\sqrt{25}\implies SR=5](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AS%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%0AR%28%5Cstackrel%7Bx_2%7D%7B-5%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%5B-5-%28-2%29%5D%5E2%2B%5B5-1%5D%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B%28-5%2B2%29%5E2%2B%285-1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%28-3%29%5E2%2B4%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B25%7D%5Cimplies%20SR%3D5)
sum all segments up, and that's perimeter.
The length could be 5 and width 3. That would equal 15
Answer:
Range for third side is
(
5
,
25
) cm.
Step-by-step explanation:
As two sides of triangle are 10 and 15
,
the third side would have to be less than the sum of other two sides i.e. less than 25 cm.
On the other hand if it is smaller one than this side plus side of length 10
should be greater than 15 and therefore
this side is greater than 15
−
10
=
5 cm.
Hence range is
(
5
,
25
)
Hope this answer helps you :)
Have a great day
Mark brainliest
The correct answer of the given question above about the incenter of a triangle is option B. The statement that best describes the incenter of a triangle is that, it is the point where the three angle bisectors of the triangle intersect. In geometry, an incenter of a triangle is described as the triangle center.
Answer:144
Step-by-step explanation: