Answer:
value of x = 5.8 mm
Step-by-step explanation:
We have given,
Two right triangles EDH and EDG.
In right triangle EDH, EH = 56mm , DH = 35 mm
Using Pythagoras theorem we can find ED.
i.e EH² = ED²+DH²
56²=ED²+35²
ED²=56²-35²
ED = √(56²-35²) = 7√39 = 43.71 mm
Now, Consider right triangle EDG
Here, EG=44.8mm , GD = x+4 and ED = 7√39
Again using Pythagoras theorem,
EG² = ED² + DG²
44.8²= (7√39)²+ (x+4)²
(x+4)² = 44.8² - (7√39)²
x+4 = √(44.8² - (7√39)²)
x+4 = 9.8
or x = 9.8 - 4 = 5.8 mm
Hence we got the value of x = 5.8 mm
Answer:
Step-by-step explanation:
4/x + 4/(x²-9) = 3/(x - 3)
4 / x + 4 / [( x - 3) ( x + 3 )] = 3 / ( x - 3 ) / * x ( x - 3 ) ( x + 3 )
Restrictions : x ≠ 0, x ≠ - 3 , x ≠ 3;
4 ( x + 3 ) ( x - 3 ) + 4 x = 3 x ( x + 3 )
4 ( x² - 9 ) + 4 x = 3 x² + 9 x
4 x² - 36 + 4 x - 3 x² - 9 x = 0
x² - 5 x - 36 = 0
x² - 9 x + 4 x - 36 = 0
x ( x - 9 ) + 4 ( x - 9 ) = 0
( x - 9 ) ( x + 4 ) = 0
x - 9 = 0, or : x + 4 = 0
Answer:
x = 9, x = - 4
The magnitude of -1-5i is √26.
<h3>What is the magnitude of -1-5i ?</h3>
Given the complex expression; -1 - 5i
To find the magnitude, we use the formula;
| a+bi | = √[ a² + b² ]
| a+bi | = √[ a² + b² ]
| -1-5i | = √[ (-1)² + (-5)² ]
| -1-5i | = √[ 1 + 25 ]
| -1-5i | = √26
Therefore, the magnitude of -1-5i is √26.
Learn more about magnitudes here: brainly.com/question/18152189
#SPJ1
35,030,000 is the correct answer, hope this helps.
Answer: x(4x
4
−3)
Step-by-step explanation:
GCF = xx
x(
x
4x
5
+
x
−3x
)
x(4x
4
−3)