Answer:
16.4 °C
Explanation:
Boiling point elevation is the phenomenon in which the boiling point of a solvent will increase when another compound is added to it; meaning that athe resultant solution has a higher boiling point than its pure solvent.
Using the ebullioscopic constant,
ΔT = m * i * Kb
Where,
Δ T is the temperature difference between the boiling point of the solution, Temp.f and boiling point of the pure solvent, Temp.i
Kb is the ebulliscope factor of water = 0.510 °C.kg/mol
i is the van hoffs number = 1
m is the molality in mol/kg.
Calculating the molality of the solution,
Temp.i = 100°C
Temp.f = 104.5 °C
= 4.5/(1*0.510)
= 8.8235 mol/kg
Freezing point depression is defined as the decrease in the freezing point of a solvent on the addition of a solute.
Using the same equation, but kf = 1.86 °C.kg/mol
ΔT = m * i * Kf
Temp.i = freezing point of water = 0°C
Temp.f = (8.8235*1.86) - 0
= 16.412 °C
Freezing point of the solution = 16.4 °C
Answer:
caused by the ability of electrons to flow from one half cell too the other
Explanation:
How is the potential voltage of a redox reaction?
The potential difference is caused by the ability of electrons to flow from one half cell to the other. Electrons are able to move between electrodes because the chemical reaction is a redox reaction. A redox reaction occurs when a certain substance is oxidized, while another is reduced.
The molar mass of Sb2S3 is approximately equal to 339.7 g/mol. We calculate the number of moles of Sb2S3 by dividing the given mass by the molar mass.
n = 23.5 g / (339.7 g/mol)
n = 0.0692 mols
To calculate for the number of formula units, we multiply the number of mols by the Avogadro's number,
number of formula units = (0.0692 mols)(6.022 x 10^3)
= 4.167 x 10^22 formula units
im pretty sute the answer would be number 4.
mark brainliest :)