Answer:
1. 3.70 g Na₂CO₃·10H₂O
2. 50.0 mL of the first solution
Explanation:
1. Prepare the solution
(a) Calculate the molar mass of Na₂CO₃·10H₂O

The molar mass of Na₂CO₃·10H₂O is 286.15 g/mol.
(b) Calculate the moles of Na₂CO₃·10H₂O

(c) Calculate the mass of Na₂CO₃·10H₂O

2. Dilute the solution
We can use the dilution formula to calculate the volume needed.
V₁c₁ = V₂c₂
Data:
V₁ = ?; c₁ = 0.0500 mol·L⁻¹
V₂ = 100 mL; c₂ = 0.0250 mol·L⁻¹
Calculation:

The volume becomes two. You have to use the equation P1 x V1 = P2 x V2
P is pressure and V is volume.
P1 = 50 P2 = 125
V1 = 5 V2 = v (we don't know what it is)
Then set up the equation:
50 times 5 = 125 times v
250 = 125v
the divide both sides by 125 and isolate v
2 = v
Therefore the volume is decreased to 2.
Also, Boyle's Law explains this too: Volume and pressure are inversely related, This means that when one goes up the other goes down (ie when pressure increases volume decreases and vice versa). Becuase the pressure went up from 50 KPa tp 125 KPa the volume had to decrease.
Answer:
Jupiter
Explanation:
Please don't report again, That hurt my feelings
X:5.8g=16:(23+1+12+3*16)
x:5.=16:84
x:=5.8* 16/84
this is approximately 1.1
Find it on google i’m pretty sure i saw it somewhere so sorry this doesn’t help