High temperature and low pressure<--Most likely
Low temperature and high pressure<----Less likely.
So the answer to this is Low temperature and high pressure.
Answer:
sodium atoms are much larger than chlorine atoms but in case of sodium ions they are much smaller thqn chlorine ions
Answer:

Explanation:
Hello there!
In this case, given the T-V variation, we understand it is possible to apply the Charles' law as shown below:

Thus, since we are interested in the initial temperature, we can solve for T1, plug in the volumes and use T2 in kelvins:

Best regards!
Answer:
Composition of the mixture:
%
%
Composition of the vapor mixture:
%
%
Explanation:
If the ideal solution model is assumed, and the vapor phase is modeled as an ideal gas, the vapor pressure of a binary mixture with
and
molar fractions can be calculated as:

Where
and
are the vapor pressures of the pure compounds. A substance boils when its vapor pressure is equal to the pressure under it is; so it boils when
. When the pressure is 0.60 atm, the vapor pressure has to be the same if the mixture is boiling, so:

With the same assumptions, the vapor mixture may obey to the equation:
, where P is the total pressure and y is the fraction in the vapor phase, so:
%
The fractions of B can be calculated according to the fact that the sum of the molar fractions is equal to 1.