Find the fair share. ⅜, ⅙, ⅙, ⅛, ½, ¼, ½, ⅔, ¼, ¾, ⅜, ¼, ⅜, ¼
Vlada [557]
2/3rds is the answer. Good luck
Answer:
$0.43
Step-by-step explanation:
First, we must divide $3.87 by 9.

<em>Hope</em><em> </em><em>this</em><em> </em><em>helped</em><em> </em><em>:</em><em>)</em>
<em>Please</em><em> </em><em>mark</em><em> </em><em>brainliest</em><em> </em><em>if</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em>
Answer:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
Step-by-step explanation:
Use the following rules for exponents:
![a^m*a^n=a^{m+n}\\\\\sqrt[3]{x^3}=x](https://tex.z-dn.net/?f=a%5Em%2Aa%5En%3Da%5E%7Bm%2Bn%7D%5C%5C%5C%5C%5Csqrt%5B3%5D%7Bx%5E3%7D%3Dx)
Simplify 24. Find two factors of 24, one of which should be a perfect cube:

Insert:
![\sqrt[3]{2^3*3a^{10}b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3a%5E%7B10%7Db%5E6%7D)
Now split the exponents. Split 10 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^6}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E6%7D)
Split 6 into as many 3's as possible:

Insert as exponents:
![\sqrt[3]{2^3*3*a^3*a^3*a^3*a^1*b^3*b^3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2%5E3%2A3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D)
Now simplify. Any terms with an exponent of 3 will be moved out of the radical (rule #2):
![2\sqrt[3]{3*a^3*a^3*a^3*a^1*b^3*b^3}\\\\\\2*a*a*a\sqrt[3]{3*a^1*b^3*b^3}\\\\\\2*a*a*a*b*b\sqrt[3]{3*a^1}](https://tex.z-dn.net/?f=2%5Csqrt%5B3%5D%7B3%2Aa%5E3%2Aa%5E3%2Aa%5E3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%5Csqrt%5B3%5D%7B3%2Aa%5E1%2Ab%5E3%2Ab%5E3%7D%5C%5C%5C%5C%5C%5C2%2Aa%2Aa%2Aa%2Ab%2Ab%5Csqrt%5B3%5D%7B3%2Aa%5E1%7D)
Simplify:
![2a^3b^2\sqrt[3]{3a}](https://tex.z-dn.net/?f=2a%5E3b%5E2%5Csqrt%5B3%5D%7B3a%7D)
:Done
Answer:
el acento es donde está las tildes
Answer:
70cm
Step-by-step explanation:
,
Since, both of the tank posses the same quantity of water then there volume is the same thing
For rectangular base
Volume= (Lenght × breadth × hheight)
If we substitute values
Lenght= 80 cm
Breadth= 70 cm
height= 45 cm
Volume= 80cm × 70cm × 45cm
Volume= 252000cm^3
For square base
Volume= (side)^2 × height
side =60cm.
But volume of square base= volume of
rectangular base
252000cm^3= 60^2 × height
Height= (252000cm^3)/(60^2 )
Height= 70 cm
Hence, the second tank is 70 cm deep