Answer:
6, 2, 2/3, 2/9, 2/27, 2/81
Step-by-step explanation:
The nth term of a geometric progression is expressed as;
Tn = ar^n-1
a is the first term
n is the number of terms
r is the common ratio
Given
a = 6
r = 1/3
when n = 1
T1 = 6(1/3)^1-1
T1 = 6(1/3)^0
T1 = 6
when n = 2
T2= 6(1/3)^2-1
T2= 6(1/3)^1
T2 = 2
when n = 3
T3 = 6(1/3)^3-1
T3= 6(1/3)^2
T3= 6 * 1/9
T3 = 2/3
when n = 4
T4 = 6(1/3)^4-1
T4= 6(1/3)^3
T4= 6 * 1/27
T4 = 2/9
when n = 5
T5 = 6(1/3)^5-1
T5= 6(1/3)^4
T5= 6 * 1/81
T5 = 2/27
when n = 6
T6 = 6(1/3)^6-1
T6= 6(1/3)^5
T6= 6 * 1/243
T6 = 2/81
Hence the first six terms are 6, 2, 2/3, 2/9, 2/27, 2/81
Answer:

Step-by-step explanation:

In similar figures, the ratio between corresponding sides are the same.

Simplify the two to see that they are equal.
The top and bottom of the left fraction are divisible by 5.
The top and bottom of the right fraction are divisible by 7.

Of course, the dimensions of that third picture would have to be this fraction.
Let's test these answers.

⇒ A is not a solution

⇒
B is the solution
(divide the top and bottom by 6)
The point P has coordinates (x,y) = (-2,6) so x = -2 and y = 6
Replace x and y with those values into the rule given
So,
(x,y) ---> (x-2, y-16)
turns into
(-2,6) ---> (-2-2, 6-16) = (-4,-10)
P = (-2,6)
P ' = (-4,-10)
The answer is -10 because your teacher just wants the y coordinate of point P'