It's a little hard to see, but I'm almost positive the y intercept is -1.
Remember, the y intercept is wherever the line intercepts in the y axis 0.
Good luck my man.
As a rule of thumb, the sampling distribution of the sample proportion can be approximated by a normal probability distribution whenever the sample size is large.
<h3>What is the Central limit theorem?</h3>
- The Central limit theorem says that the normal probability distribution is used to approximate the sampling distribution of the sample proportions and sample means whenever the sample size is large.
- Approximation of the distribution occurs when the sample size is greater than or equal to 30 and n(1 - p) ≥ 5.
Thus, as a rule of thumb, the sampling distribution of the sample proportions can be approximated by a normal probability distribution when the sample size is large and each element is selected independently from the same population.
Learn more about the central limit theorem here:
brainly.com/question/13652429
#SPJ4
<span>f(-3) = 4 + 3 + 9
f(-3) = 16
tell me if that is it
</span>
Answer:
Surface area is found:
Surface Area = 1700 cm²
Step-by-step explanation:
(The cereal box is shown in the ATTACHMENT)
The surface area of a rectangular prism can be found by added the areas of all 6 sides of the rectangular prism.
L = length = 20 cm
H = height = 30 cm
W = Width = 5 cm
<h3 /><h3>Side 1:</h3>
A(1) = L×H
A(1) = 20×30
A(1) = 600 cm²
<h3>Side 2:</h3>
As the measurements of the side at the back of side 1 has the same measurement of side 1. then:
A(2) = 600 cm²
<h3>Side 3:</h3>
A(3) = L×W
A(3) = 20×5
A(3) = 100 cm²
<h3>Side 4:</h3>
As the measurements of the side at the back of side 4 has the same measurement of side 4. then:
A(4) = 100 cm²
<h3>Side 5:</h3>
A(5) = H×W
A(5) = 30×5
A(5) = 150 cm²
<h3>Side 6:</h3>
As the measurements of the side at the back of side 5 has the same measurement of side 5. then:
A(6) = 150 cm²
<h3>Surface Area:</h3>
Adding areas of all the sides
A(1) + A(2) + A(3) +A(4) + A(5) + A(6) = 600 + 600 + 100 +100 + 150 +150
Surface Area = 1700 cm²