Answer:
The correct answer is option d.
Explanation:
The production of Acetyl-CoA takes place by the dissociation of both carbohydrates and lipids in the process of glycolysis and beta-oxidation. It then moves into the TCA cycle in the mitochondria and combines with oxaloacetate to give rise to citrate.
In the given case, no labeling will be found in the acetyl-CoA. The labeled C3 and C4 carbon of glucose signify the carboxyl carbon of pyruvate. In the succeeding reactions of the transformation of pyruvate to acetyl-CoA, the carboxyl carbon gets lost in the form of carbon dioxide. Thus, acetyl-CoA does not comprise any labeled C3 and C4 of glucose.
➜ <u>Mendel conducted breeding experiments with garden peas</u>:
[i] He studied plants (pure) of a tall/short varities.
[ii] He crossed them and obtained F1 progeny.
[iii] He found that F1 progeny was all tall plants.
[iv] He selfed the (hybrid) plants if F1 progeny.
[v] He found that in F2 progeny there were tall as well as short plants.
[vi] The three quarter plants were tall and one quarter was short.
(or any other contrasting character may be taken).
<u>Note</u>: Here, F1 means <u>First fillial generation</u> and F2 means <u>Second fillial generation</u>.
Cellular respiration uses oxygen to release the energy stored in food.
Explanation:
In breathing living organisms take oxygen and release the carbon dioxide it is similar to the aerobic respiration.
There are two types of respiration:
1. Aerobic respiration
2. Anaerobic respiration
Aerobic respiration
It is the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
Anaerobic Respiration
It is the breakdown of glucose molecule in the absence of oxygen and produce small amount of energy. Alcohol or lactic acid and carbon dioxide are also produced as byproducts.
Glucose→ lactic acid/alcohol + 2ATP + carbon dioxide!
Answer:
- Hydrogen ion concentration is lower in the mitochondrial matrix than in the intermembrane space.
- Oxidative phosphorylation relies on the hydrogen ion concentration gradient generated and maintained by the electron transport chain.
- Hydrogen ions enter the mitochondrial matrix via facilitated diffusion.
Explanation:
Oxidative phosphorylation is a metabolic pathway by which Adenosine Triphosphate (ATP) molecules are produced through the transfer of electrons from NADH or FADH2 to molecular oxygen (O2). The hydrogen (H+) ions are pumped from the mitochondrial matrix to the intermembrane space, and this movement of protons generates an electrochemical gradient across the mitochondrial membrane which is used by the ATP synthase to produce ATP. This gradient is generated by the movement of electrons through a series of electron carriers (e.g., cytochrome c and ubiquinone) that are embedded in the inner mitochondrial membrane. The movement of these H+ ions across the semipermeable mitochondrial membrane moving down their electrochemical gradient is named chemiosmosis and is an example of facilitated diffusion.
Answer:
The chloroplast
The chloroplast is involved in both stages of photosynthesis. The light reactions take place in the thylakoid. There, water (H2O) is oxidized, and oxygen (O2) is released.
Explanation: