Answer: population
Explanation:
because they are the same it cant be commuintiy
Transport
The protein is working to transport substances across the membrane.
Answer:
Hormone production and release are primarily controlled by negative feedback. In negative feedback systems, a stimulus elicits the release of a substance; once the substance reaches a certain level, it sends a signal that stops further release of the substance. In this way, the concentration of hormones in blood is maintained within a narrow range. For example, the anterior pituitary signals the thyroid to release thyroid hormones. Increasing levels of these hormones in the blood then give feedback to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland, as illustrated in Figure 18.14. There are three mechanisms by which endocrine glands are stimulated to synthesize and release hormones: humoral stimuli, hormonal stimuli, and neural stimuli.
Explanation:
Hyperthyroidism is a condition in which the thyroid gland is overactive. Hypothyroidism is a condition in which the thyroid gland is underactive. Which of the conditions are the following two patients most likely to have?
Patient A has symptoms including weight gain, cold sensitivity, low heart rate and fatigue.
Patient B has symptoms including weight loss, profuse sweating, increased heart rate and difficulty sleeping.Humoral Stimuli
The term “humoral” is derived from the term “humor,” which refers to bodily fluids such as blood. A humoral stimulus refers to the control of hormone release in response to changes in extracellular fluids such as blood or the ion concentration in the blood. For example, a rise in blood glucose levels triggers the pancreatic release of insulin. Insulin causes blood glucose levels to drop, which signals the pancreas to stop producing insulin in a negative feedback loop.
Hormonal stimuli refers to the release of a hormone in response to another hormone. A number of endocrine glands release hormones when stimulated by hormones released by other endocrine glands. For example, the hypothalamus produces hormones that stimulate the anterior portion of the pituitary gland. The anterior pituitary in turn releases hormones that regulate hormone production by other endocrine glands. The anterior pituitary releases the thyroid-stimulating hormone, which then stimulates the thyroid gland to produce the hormones T3 and T4. As blood concentrations of T3 and T4 rise, they inhibit both the pituitary and the hypothalamus in a negative feedback loop.
Answer: A
Explanation:
With a decrease in predators there is no challenge for the prey and population growth can become uncontrollable
Hope this helps
Answer:
<u>Light microscope</u>:
- use a beam of light to produce magnified images
- can be used to examine living cells and tissues
<u>Scanning electron microscope</u>:
- use a beam of electrons to produce magnified images
- can be used to examine DNA
- can be used to examine cells
<u>Transmission electron microscope</u>:
- use a beam of electrons to produce magnified images
- can be used to examine DNA
- can be used to examine cells
Explanation:
Light microscope: is a commonly used microscope also known as compound microscope. Magnifies images from 40X upto 1000X. It uses ray of visible light to produce a magnified image. The light microscope can be used to view specimen of both living and dead cells or tissues. However, it doesn't give a detailed view of a specimen like electron microscope.
Scanning electron microscope: It uses electron beam as an illuminating source. It has a much higher resolving power than light microscope because it uses electrons instead of light. It magnifies object upto 500000 times the actual size. Internal structures can also be viewed. However, only dead specimen can be used because the beam of electrons can kill the cells. They are of two types:
- <u>Scanning electron microscope(SEM): </u>an electron beam passes over the specimen's surface and displaces electrons which are then focused on a screen to form an image. Images appear in 3-D
- <u>Transmission electron microscope: </u>electromagnets magnify the image by passing beam of electrons through a thin specimen. Images appear in 2-D