Yes/..................................................
If a = 2.0 cm, b = 5.0 cm, and i = 20 a, 6.0 μt is the magnitude of the magnetic field at the point p, So the correct option is (a).
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field.
= μ
i
/ 
= μ
i
/ 
As,
is moving down and
is moving up so,
-
= (μ
i
/
) - [μ
i
/
]
-
= μ
i 24 / 
-
= 
-
= 5.98×
T ≈ 6μT
Therefore, 6.0 μt is the magnitude of the magnetic field .
Learn more about magnetic field here;
brainly.com/question/23096032
#SPJ4
Answer:
Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.
Answer: The reflected ray will be 44 degrees.
Explanation: The Law of Reflection states the angle of incidence ( the incoming light ray) equals the angle of reflection ( the light ray being reflected) Therefore, the angle of reflection will be 44 degrees.
Hope that helped!
Solids have the highest density. Then comes liquid and the less dense one is gas.