Answer:
Explanation:
Given that, .
R = 12 ohms
C = 500μf.
Time t =? When the charge reaches 99.99% of maximum
The charge on a RC circuit is given as
A discharging circuit
Q = Qo•exp(-t/RC)
Where RC is the time constant
τ = RC = 12 × 500 ×10^-6
τ = 0.006 sec
The maximum charge is Qo,
Therefore Q = 99.99% of Qo
Then, Q = 99.99/100 × Qo
Q = 0.9999Qo
So, substituting this into the equation above
Q = Qo•exp(-t/RC)
0.9999Qo = Qo•exp(-t / 0.006)
Divide both side by Qo
0.9999 = exp(-t / 0.006)
Take In of both sodes
In(0.9999) = In(exp(-t / 0.006))
-1 × 10^-4 = -t / 0.006
t = -1 × 10^-4 × - 0.006
t = 6 × 10^-7 second
So it will take 6 × 10^-7 a for charge to reached 99.99% of it's maximum charge
Answer:
B. Developed out of efforts of man trying to explain our physical environment.
Explanation:
This is because physics, as we all know of, is considered to be <em>crucial to understanding the world around us</em>, making it the most basic and fundamental of science.
Answer
-Directly; outside air pressure
Vapor pressure is directly related to the temperature of the liquid. user: in an open system, the vapor pressure is equal to the outside air pressure.
Explanation;
-As the temperature of a system increases, the average kinetic energy of the molecules increases in both the liquid and gas phases.
-A higher average kinetic energy facilitates the escape of molecules from the liquid phase into the gas phase. At the same time, the rate of return of gas phase molecules to the liquid also increases. A new equilibrium point is reached at a higher gaseous vapor pressure. The increase in vapor pressure with temperature is exponential.
If you mean pattern designs it’s rocky bumpy and you can see the circle patterns
If you mean phases the here’s a picture