Each loop is of a different size, so we can't rotate the figure some angle x to have it line up with itself (0 < x < 360). Therefore, it doesn't have any rotational symmetry. That rules out choice A and choice C. Point symmetry is the same as saying "rotational symmetry of 180 degrees"
The figure doesn't have any line symmetry either. There is no line we can draw and reflect the figure over to have it match up with itself. That rules out choice B and points to choice D
Answer: D) It has no reflectional symmetry.
Just substitue
for
in the expression.



Well, in order to first determine the slope or y-intercept, you must put change the equation to this format: y=mx+b.
m=slope and b=y-interceptI
in order to do that, you must change this equation.
x+3y=9
-x -x
----------
3y=9-x
Then, rewrite it as:
3y=-x+9
_______
3 3
simplify to
y=-x/3 +9
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
Limit Rule [Variable Direct Substitution Exponential]: 
Limit Property [Multiplied Constant]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Solve</u>
- Rewrite [Limit Property - Multiplied Constant]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
- Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%5E4%29)
- Simplify:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%2064)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e