Net force on the car=F=4.8 x 10³ N
Explanation:
mass of car= 1.2 x 10³ Kg
initial velocity= Vi=0
Final velocity= Vf= 20 m/s
time = t= 5 s
Using kinematic equation,
Vf= Vi + at
20= 0 + a (5)
5 a=20
a= 20/5
a= 4 m/s²
Now force is given by F = ma
F= 1.2 x 10³ (4)
F=4.8 x 10³ N
Answer:

Explanation:
Asúmase que la patinadora experimenta una aceleración constante. La fuerza neta experimentada por la patinadora:
![F_{net} = (50\,kg)\cdot \left[\frac{\left(15\,\frac{m}{s}\right)^{2}-\left(0\,\frac{m}{s}\right)^{2} }{2\cdot (3000\,m)} \right]](https://tex.z-dn.net/?f=F_%7Bnet%7D%20%3D%20%2850%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%5Cfrac%7B%5Cleft%2815%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5Cright%29%5E%7B2%7D%20%7D%7B2%5Ccdot%20%283000%5C%2Cm%29%7D%20%5Cright%5D)

Answer:
The distance will be x = 41.7 [m]
Explanation:
We must first find the components in the x & y axes of the initial velocity.
![(v_{o})_{x} = 15*cos(20)= 14.09[m/s]\\(v_{o})_{y} = 15*sin(20)= 5.13[m/s]](https://tex.z-dn.net/?f=%28v_%7Bo%7D%29_%7Bx%7D%20%3D%2015%2Acos%2820%29%3D%2014.09%5Bm%2Fs%5D%5C%5C%28v_%7Bo%7D%29_%7By%7D%20%3D%2015%2Asin%2820%29%3D%205.13%5Bm%2Fs%5D)
The acceleration is the gravity acceleration therefore.
g = 9.81 [m/s^2]
Now we can calculate how long it takes to fall.
![y=(v_{o})_{y}*t-0.5*g*t^2\\-28 = 5.13*t-0.5*9.81*t^2\\-28=-4.905*t^2+5.13*t\\4.905*t^2-5.13*t=28\\t = 2.96[s]](https://tex.z-dn.net/?f=y%3D%28v_%7Bo%7D%29_%7By%7D%2At-0.5%2Ag%2At%5E2%5C%5C-28%20%3D%205.13%2At-0.5%2A9.81%2At%5E2%5C%5C-28%3D-4.905%2At%5E2%2B5.13%2At%5C%5C4.905%2At%5E2-5.13%2At%3D28%5C%5Ct%20%3D%202.96%5Bs%5D)
With this time we can find the horizontal distance that runs the projectile.
![x=(v_{o})_{x}*t\\x=14.09*2.96\\x=41.7[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bo%7D%29_%7Bx%7D%2At%5C%5Cx%3D14.09%2A2.96%5C%5Cx%3D41.7%5Bm%5D)
<u>Answer</u>:
Effort is the unaltered force. Load is the altered force.