1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
3 years ago
6

A ball is falling after rolling off a tall roof. The ball has

Physics
2 answers:
Rom4ik [11]3 years ago
8 0
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.
Stella [2.4K]3 years ago
8 0

The ball has both kinetic and potential energy.

You might be interested in
Consider two identical objects of mass m = 0.250 kg and charge q = 4.00 μC. The first charge is held in place at the origin of a
Gnom [1K]

Answer:

a = 640 m/s²

Explanation:

From work-kinetic energy principles,

The net force acting on the second object is the gravitational force and the electric force due to the first object.

So, the gravitational force on the mass is F₁ = Gm₁m₂/r² since m₁ = m₂ = m, U = -Gm²/r²

Also, the electric force on the charge is F₂ = kq₁q₂/r² since q₁ = q₂ = q, U = kq²/r²

The net Force F = ma

So, -F₁ + F₂ = F     (F₁ is negative since it is an attractive force in the negative x -direction and F₂ is positive since it is a repulsive force in the positive x- direction)

-Gm²/r² + kq²/r² = ma

ma = -Gm²/r² + kq²/r²

a = (-Gm²/r² + kq²/r²)/m

a = (-G + kq²/m²)m/r²

Since m = 0.250 kg, q = 4.00 μC = 4.00 × 10⁻⁶ C, r = 3.00 cm = 3.00 × 10⁻² m, G = 6.67 × 10⁻¹¹ Nm²/kg², k = 9 × 10⁹ Nm²/C² and a = acceleration of second mass.

Substituting the variables into the equation, we have

a = (m/r²)(-G + k(q/m)²)]

a = (0.250 kg/{3.00 × 10⁻² m}²)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(4.00 × 10⁻⁶ C/0.250 kg)²)

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(16 × 10⁻⁶ C/kg)²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 9 × 10⁹ Nm²/C²(256 × 10⁻¹² C²/kg²)]

a = (0.250 kg/9.00 × 10⁻⁴ m)(-6.67 × 10⁻¹¹ Nm²/kg² + 2304 × 10⁻³ Nm²/kg²  ]

a = (0.250 kg/9.00 × 10⁻⁴ m)(2.304 Nm²/kg²)

a = 0.576 Nm²/kg /9.00 × 10⁻⁴ m²

a = 0.064 × 10⁴N/kg

a = 64 × 10 N/kg)

a = 640 m/s²

8 0
3 years ago
An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,
insens350 [35]

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

8 0
3 years ago
A device consisting of four heavy balls connected by low-mass rods is free to rotate about an axle. It is initially not spinning
zubka84 [21]

The angular speed of the device is 1.03 rad/s.

<h3>What is the conservation of angular momentum?</h3>

A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.

Using the conservation of angular momentum

L_{i}=L_{f}

Here,  = the system's angular momentum before the collision

L_{i} = 0 + mv

= (0.005)(450)(0.752)

= 1.692 kgm²/s

The moment of inertia of the system is given by

I = 2(M₁R₁² + M₂R₂²)+ mR₁²

= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²

= 1.6292 kgm²

Here,  = Iω

So,

1.692 = 1.6292(ω)

ω = 1.03 rad/s

To know more about the conservation of angular momentum, visit:

brainly.com/question/1597483

#SPJ1

4 0
1 year ago
Read 2 more answers
How does an inclined plane change distance and how does it change direction
ElenaW [278]
 Objects are known to go down because of a unbalanced force
7 0
3 years ago
Which of the following represents an element?
Digiron [165]
H2 is the correct answer
7 0
3 years ago
Other questions:
  • A policeman investigating an accident measures the skid marks left by a car on the horizontal road. He determines that the dista
    6·1 answer
  • If the work function for a certain metal is 1.8eV, what is the stopping potential for electrons ejected from the metal when ligh
    12·1 answer
  • If the acceleration was reduced 1/4 what will be the new force
    7·1 answer
  • A car is traveling at 20 meters/second and is brought to rest by applying brakes over a period of 4 seconds. What is its average
    13·2 answers
  • An 1800 kg helicopter rises with an upward acceleration of 2.0 m/s?. What lifting force is supplied by its rotating blades?
    7·1 answer
  • Currents in the ocean are caused by differences in water density. Colder, denser water tends to
    9·2 answers
  • HELP ASAP WILL GIVE BRAINLIEST TO WHOEVER ANSWERS FIRST!!!!
    13·1 answer
  • Two football players run down the field. One has a mass of 70 kg and the other has a mass of 100 kg. Which player will be harder
    13·1 answer
  • Q4: Two fixed charges, 1 c and -3 C are
    5·1 answer
  • In a perfectly inelastic one-dimensional collision between two moving objects, what condition alone is necessary so that the fin
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!