Well, the acceleration is the difference of speeds divided by the time period.

.
One rev/s is

, so our final result is

.
Answer: 12.67 cm, 8 cm
Explanation:
Given
Normal distance of separation of eyes, d(n) = 6 cm
Distance of separation is your eyes, d(y) = 9.5 cm
Angle created during the jump, θ = 0.75°
To solve this, we use the formula,
θ = d/r, where
θ = angle created during the jump
d = separation between the eyes
r = distance from the object
θ = d/r
0.75 = 9.5 / r
r = 9.5 / 0.75
r = 12.67 cm
θ = d/r
0.75 = 6 / r
r = 6 / 0.75
r = 8 cm
Thus, the object is 12.67 cm far away in your own "unique" eyes, and just 8 cm further away to the normal person eye
Crystalline solids must have a specific, orderly arrangement of atoms to be considered so.
Answer:
<u><em>a. True</em></u>
Explanation:
<em>Vectors are an important part of the language of science, mathematics, and engineering.</em>
Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT