Yellow stripes because it is dominant.
If a plant cell had a mutation such that the cyclic electron flow is observed at a much higher rate, which photosystem is most likely mutated such that energy is absorbed at a lower rate?
PSI
PSII
Answer:
PSII
Explanation:
Non-cyclic phosphorylation involves both PSI and PSII. The process starts with the splitting of water and excitation of electrons of the reaction center of PSII upon the absorption of solar energy at the wavelength of 680 nm. Any mutation in PSII would not allow the non-cyclic phosphorylation to occur when only cyclic phosphorylation would occur. The process of cyclic phosphorylation includes only PS I. Its reaction center absorbs maximum light at 700 nm and is cycled back while supporting ATP synthesis. Therefore, if a plant performs cyclic phosphorylation at a higher rate and absorbs less energy, this means that mutation was in PSII.
***see attached pic***
Some helpful tips:
The nucleus is always going to be the big, spherical shape.
The ER is always going to be a weird, folded looking structure attached to the nucleus (rough = has ribosomes on it which are usually represented by little dots, smooth = has no ribosomes on it aka no dots)
The GA looks like the ER but it is not going to be attached to the nucleus like the ER is.
The mitochondria is always going to be pill-shaped and have weird folds inside of it.
thin walls.
a moist inner surface.
a huge combined surface area.
I think the answer is C and D