1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
8

What is the reason for statement 3 in the proof?. Prove –d + (d + e) = e. StatementReason. 1–d + (d + e) = (–d + d) + e1. Associ

ative Property of Addition. 2= 0 + e2. Additive Inverse Property. 3= e3. ____________________. A. Definition of Addition. B. Identity Property of Addition. C. Commutative Property of Addition. D. Distributive Property
Mathematics
2 answers:
Elena-2011 [213]3 years ago
6 0
The correct answer to this question is letter "B. Identity Property of Addition." The reason for statement 3 in the proof is using the i<span>dentity Property of Addition.

</span>

when u add 0 to some number, u get the original number back.

e-lub [12.9K]3 years ago
6 0
<h2>Answer:</h2>

Option: B is the correct answer.

   B. Identity Property of Addition.

<h2>Step-by-step explanation:</h2>

We know that identity under addition is the element which when added to any elements  gives the resultant as the same element.

i.e. if e is the identity of the set then,

       a*e=a for all a belongs to the set, where * is the operation

We know that under addition operation the identity is the zero element.

Because if zero is added to any element than it gives the same element.

Reason. 1       -d+(d + e)=(-d+d)+e    1. Associative Property of Addition.

Reason 2               = 0 + e                2. Additive Inverse Property.

Reason 3                   = e                  3. Identity Property of Addition.

You might be interested in
You are selling lemonade for $1.50 a bag of caramel corn is three dollars a hotdog is $2.50 at affair right and simplify and exp
polet [3.4K]
Can you rephrase the question? i dont really understand
6 0
3 years ago
Which number is rational?<br><br> Please help me
aliya0001 [1]

Answer:A

Step-by-step explanation:

6 0
3 years ago
20% of the students in the class play an instrument. if there are 35 students in class, how many play an instrument?
kondor19780726 [428]

Answer:

7 students play an instrument.

Calculation:

35=100%

20%=[20×35]÷100

=7

6 0
3 years ago
5. How does the length of the long leg compare to the length of the short leg?
Oliga [24]

Answer:

measure it bro lol

Step-by-step explanation:

4 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
Other questions:
  • 12, 6, 0, -6,<br> What is the common difference in the following arithmetic sequence
    10·2 answers
  • On a math test, the students are asked to
    11·1 answer
  • Choose the correct description of the set A= {5, 10, 15, 20…}
    8·2 answers
  • What is 65/8 as a proper fraction?
    5·1 answer
  • The dimensions of a CD case are 14.2cm by 12.5cm. Each case is approxiomately 1cm deep. What would be the volume of this stack o
    6·1 answer
  • Could u please help or give me the answer​
    12·2 answers
  • HELP LOL, i dont understand
    11·1 answer
  • Five hats and three scarves cost $99. While three hats and five scarves cost
    8·1 answer
  • How to do these answers get marked as brainliest!
    5·1 answer
  • Can anyone help me on this? IN NEED OF SOME HELP!
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!