Answer:
the structure of an atom, theoretically consisting of a positively charged nucleus surrounded and neutralized by negatively charged electrons revolving in orbits at varying distances from the nucleus, the constitution of the nucleus and the arrangement of the electrons differing with various chemical elements.
Explanation:
Metals have the ability to conduct electricity.
Metals are lustrous, malleable, ductile and are good conductor of heat and electricity.
They conduct electricity because the electrons in metal are delocalized electrons and are free moving electrons so when they gain energy (heat) they vibrate more quickly and can move around, this means that they can pass on the energy more quickly.
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
a) ammonium ion
b) amide ion
Explanation:
The order of decreasing bond angles of the three nitrogen species; ammonium ion, ammonia and amide ion is NH4+ >NH3> NH2-. Next we need to rationalize this order of decreasing bond angles from the valence shell electron pair repulsion (VSEPR) theory perspective.
First we must realize that all three nitrogen species contain a central sp3 hybridized carbon atom. This means that a tetrahedral geometry is ideally expected. Recall that the presence of lone pairs distorts molecular structures from the expected geometry based on VSEPR theory.
The amide ion contains two lone pairs of electrons. Remember that the presence of lone pairs causes greater repulsion than bond pairs on the outermost shell of the central atom. Hence, the amide ion has the least H-N-H bond angle of about 105°.
The ammonia molecule contains one lone pair, the repulsion caused by one lone pair is definitely bless than that caused by two lone pairs of electrons hence the bond angle of the H-N-H bond in ammonia is 107°.
The ammonium ion contains four bond pairs and no lone pair of electrons on the outermost nitrogen atom. Hence we expect a perfect tetrahedron with bond angle of 109°.