1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
6

Find the difference 4 2/3-3 1/3.

Mathematics
1 answer:
Darya [45]3 years ago
3 0
1 1/3 All you do is 4-3 + 2/3-1/3= 1 1/3
You might be interested in
A. 3<br> B. -3/4<br> C. -1<br> D. 2
yawa3891 [41]
B
because rise over run
6 0
3 years ago
Read 2 more answers
a student walks 2 kilometers in 30 minutes. What is the students average speed in kilometers per hour?
enot [183]

Answer:

4 km/h

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
I don't know how to do this can someone explain it
sweet [91]
You’re trying to find x which is the side opposite to the angle. You’re given the adjacent angle. To find the variable, you use tangent. So you plug in tan(x)= opposite/adjacent. In this case it would be tan(27)=x/15. Then you multiply both sides by 15 to be 15(tan(27))=x which is 7.6=x
5 0
2 years ago
Find the taylor series centered at the given value of a and find the associated radius of convergence. (1) f(x) = 1 x , a = 1 (2
Kitty [74]

a) The radius of convergence is calculated as

R=1.

b) Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

<h3>What is the associated radius of convergence.?</h3>

(a)

Take into consideration the function f with respect to the number a,

f(x)=\frac{1}{x}, \quad a=1

In case you forgot, the Taylor series for the function $f$ at the number a looks like this:

\begin{aligned}f(x) &=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} \\&=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{*}(a)}{2 !}(x-a)^{2}+\ldots\end{aligned}

Determine the function f as well as any derivatives of the function $f by setting a=1 and working backward from there.

\begin{aligned}f(x) &=\frac{1}{x} & f(1)=\frac{1}{1}=1 \\\\f^{\prime}(x) &=-\frac{1}{x^{2}} &  f^{\prime}(1)=-\frac{1}{(1)^{2}}=-1 \\\\f^{\prime \prime}(x) &=\frac{2}{x^{3}} &  f^{\prime \prime}(1)=\frac{2}{(1)^{3}}=2 \\\\f^{\prime \prime}(x) &=-\frac{2 \cdot 3}{x^{4}} & f^{\prime \prime}(1)=-\frac{2 \cdot 3}{(1)^{4}}=-2 \cdot 3 \\\\f^{(*)}(x) &=\frac{2 \cdot 3 \cdot 4}{x^{5}} & f^{(n)}(1)=\frac{2 \cdot 3 \cdot 4}{(1)^{5}}=2 \cdot 3 \cdot 4\end{aligned}

At the point when a = 1, the Taylor series for the function f looks like this:

f(x) &=f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots \\\\&=f(1)+\frac{f^{\prime}(1)}{1 !}(x-1)+\frac{f^{\prime}(1)}{2 !}(x-1)^{2}+\frac{f^{\prime \prime}(1)}{3 !}(x-1)^{3}+\cdots \\

&=1+\frac{-1}{1 !}(x-1)+\frac{2}{2 !}(x-1)^{2}+\frac{-2 \cdot 3}{3 !}(x-1)^{3}+\frac{2 \cdot 3 \cdot 4}{4 !}(x-1)^{4}+\cdots \\\\&=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4}+\cdots \\\\&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

In conclusion,

&=\sum_{1=0}^{\infty}(-1)^{n}(x-1)^{n}

Find the radius of convergence by using the Ratio Test in the following manner:

\begin{aligned}L &=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\&=\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}(x-1)^{n+1}}{(-1)^{n}(x-1)^{n}} \mid \\&=\lim _{n \rightarrow \infty}|x-1| \\&=|x-1|\end{aligned}

The convergence of the series when L<1, that is, |x-1|<1.

The radius of convergence is calculated as

R=1.

For B

Take into consideration the function f with respect to the number a,

a_{n}=(-1)^{n}(x-1)^{n}

f(x)=\left(x^{2}+2 x\right) e^{x},  a=0 The Taylor series for f(x)=e^{x} at a=0 is,

e^{2}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots

f(x) &=\left(x^{2}+2 x\right) e^{x} \\&=\left(x^{2}+2 x\right)\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+2 x\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right) \\&=x^{2}\left(1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\frac{x^{4}}{4 !}+\ldots\right)+\left(\frac{x^{4}}{2 !}+\frac{x^{5}}{3 !}+\frac{x^{6}}{4 !}+\ldots\right)+\left(2 x+2 x^{2}+\frac{2 x^{3}}{2 !}+\frac{2 x^{4}}{3 !}+\frac{2 x^{5}}{4 !}+\ldots\right) \\

&=\left(x^{2}+x^{3}+\frac{x^{4}}{2 !}\right) \\&=2 x+3 x^{2}+\left(1+\frac{2}{2 !}\right) x^{3}+\left(\frac{1}{2 !}+\frac{2}{3 !}\right) x^{4}+\left(\frac{1}{4 !}\right) x^{5}+\ldots \\&=2 x+3 x^{2}+2 x^{3}+\frac{5}{6} x^{4}+\frac{1}{4} x^{5}+\ldots

Due to the fact that it converges in every direction, the radius of convergence is either infinity or zero.

Read more about convergence

brainly.com/question/15415793

#SPJ4

The complete question is attached below

3 0
1 year ago
From the given angle measurements, you can’t directly find the measure of angle L. However, you can find the measurement of angl
artcher [175]

Answer:Angles A, B, and C form a triangle. The sum of the angle measurements of a triangle is 180°. So, I can find the measurement of angle C by subtracting the measurements of angle A and angle B from 180°.

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • You read 50 pages in an hour. Your sister reads 40 pages in an hour. Explain how to find out how many more pages you read than y
    10·2 answers
  • Write 2^2 · 3^4 · 5 in its corresponding composite form.
    9·1 answer
  • Evaluate the expression, 12w - 5 if w = 4*<br> (2 Points)<br> Enter your answer
    12·1 answer
  • Plz help me, thank you
    14·1 answer
  • To the nearest hundredth, what is the surface area that will be painted?
    5·2 answers
  • Evaluate this expression by distributing the multiplication over division: 5 x (7+4)
    7·1 answer
  • Please help me with this!
    12·2 answers
  • A game app costs a base fee of $5.
    6·2 answers
  • Help as soon as you can pls!!<br> I’m a bit confused on the questions asked below
    12·1 answer
  • If Rachel were to paint her living room alone, it would take 2 hours. Her sister Fran could do the job in 5 hours. How many hour
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!