1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
5

How to find the angle between two lines given their slopes?

Mathematics
1 answer:
vichka [17]3 years ago
3 0
Tan(tan−1(yx)−θ) is the slope m. Then use "point slope formula" (if you want an equation of the line, that is...) Labeling the origin "O" and the point (x,y) "P", the segment ¯OP makes an angle of tan−1(yx) with the positive x-axis
You might be interested in
Simplify the variable expression by evaluating it's numerical part m-13+42-6
goldfiish [28.3K]

ANSWER

m + 23

EXPLANATION

The given expression is

m - 13 + 42 - 6

We regroup the numerical parts to get;

m + 42 - 6 - 13

Now let us simplify the negative numbers.

m + 42 - 19

We now subtract 19 from 42 to get;

m + 23

We can't simplify further

Hence the simplest form is:

m + 23

3 0
3 years ago
Fill in the blank
timurjin [86]

The blank space in the task content should be filled with; Wages.

<h3>What type of employee compensation is Wage?</h3>

A wage by it's primitive definition is a fixed regular payment usually paid on a daily or weekly basis by the employer to an employee which could be skilled or unskilled.

Commission, and salary which is a monthly analogue of wages is another form of employee compensation.

Read more on employee compensation;

brainly.com/question/26178761

#SPJ1

8 0
2 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Kaylee has 2 gallons each of red and blue paint, and 1 gallon each of orange and green paint. She paints her bedroom with these
Aleks04 [339]

Answer:

3( 73/84 )left over

Step-by-step explanation:

She had 6 gallons in total

2/3+1/4+1/2+5/7=179/84   =  2 ( 11/84)

6/1-179/84 = 325/84    =  3(73/84)

She used  179/84

She have left 325/84

179/84   +  325/84 = 6

   With mixed numbers:

2  11/84  

3  73/84

 2+3=5                11/84+73/84= 84/84 =1

5+1=6

 

8 0
4 years ago
at a dog park, there are 12 golden retrievers and 20 poodles . what is the ratio of golden retrievers to poodles
EleoNora [17]
Golden retrievers: 12/32
poodles: 20/32
does it need to be simplified?
7 0
3 years ago
Read 2 more answers
Other questions:
  • A radio station requires DJs to play two commercials for every 10 songs they played what is the unit rate of songs to commercial
    11·1 answer
  • What shapes have only 1 pair of opposite sides parallel?
    14·2 answers
  • What are the solutions to the equation and check for extraneous solutions:<br><br> 16=(x-2)^2/3
    5·1 answer
  • Classify a triangle with sides measuring 5, 7 and 8.
    10·1 answer
  • How many times can 450 go into 540,000
    15·2 answers
  • Tell whether 24 is a factor or a multiple of the number 6?
    8·1 answer
  • Scientists are monitoring the pH of oceans. Which of these are they most likely studying?
    9·1 answer
  • I will be really happy if you help me out! :)
    14·1 answer
  • i am part of a whole i am less than 1/2 but greater than four tents i am a decimal with the digit two in my hundreds place what
    12·1 answer
  • HELP DUE IN 10 MINS!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!