1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
True [87]
3 years ago
9

The proper sequence to use in solving 3x - 2 = 60 is

Mathematics
1 answer:
Otrada [13]3 years ago
3 0
Answer: add (+2) to each side so add 2 to -2 and also add 2 to 60 which you will end up with 3x=62 and from there divide each side by 3 so 3 divided by 3 (which is x) and 62 divided by 3 (which is 20.6) so x=20.6
Have a great day :)
You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Complete the following proof.<br> Given: m ∠XOY = m ∠WOV<br> m YZ = m ZW<br> Prove: m XZ = m ZV
horsena [70]

Answer:

Step-by-step explanation:

m ∠XOY = m ∠WOV

so, m XY = m WV --- (i)

     { If angle subtended by two arcs at the center are equal, then length of arc are equal}

m YZ = m ZW  ------- (ii)    {given}

Add (i) and (ii)

XY + YZ = WV + ZW

XZ = ZV    

Hence proved.

4 0
3 years ago
Read 2 more answers
Please help quickly I’m being timed
ollegr [7]
It’s a
Distribute the exponent to each term, then move your negative exponents to the opposite side then simplify.
4 0
3 years ago
The store price of a jeans is $50. If the discount given by the store is 45%, calculate the discount amount offered by the store
nata0808 [166]

Step-by-step explanation:

50+45%=72.5

50-45%=27.5

50×45%=22.5

7 0
2 years ago
Read 2 more answers
Which transformation shows that the two given circles are similar?
gregori [183]
Circle A -- center(2, 0), radius 8 Circle A' -- center(-1, 5), radius 3
3 0
3 years ago
Other questions:
  • Amir wants to buy a new MP3 player that costs $76.50. If he saves $8.50 each week, how many weeks will it take Amir to save enou
    14·2 answers
  • The greatest common factor <br> 40j-16=
    6·1 answer
  • The Cartesian coordinates of a point are given. (a) (4, −4)(i) Find polar coordinates (r, θ) of the point, where r &gt; 0 and 0
    9·1 answer
  • If x = –2, which number line shows the value of |x|? Group of answer choices
    14·1 answer
  • Find the sum of the digits 10^15−1.
    8·1 answer
  • )What is the distance between the points (12, 9) and (0, 4)
    9·1 answer
  • Write the equation of the line in slope-intercept form using y=mx+b​
    15·1 answer
  • Can someone assist me with this?
    6·1 answer
  • What is 1/10 of 6000
    8·1 answer
  • Part B
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!