the answer is gene- the combined DNA from your mom and dad which makes up your full set of DNA.
This can be caused by over grazing from the livestock or even wild animals such as rabbits. Rabbits are known to breed very quickly and can destroy an ecosystem with their sheer numbers.
Answer:
Cystic fibrosis mutation is recessive to normal allele because only one functional or normal allele is enough to produce a functional protein. So, if mutation is present in one allele then also, a normal protein can be made from normal allele. The presence of normal protein prevents the expression of disease.
In addition, mutated allele only results in the loss of function of protein which can be compensated by the expression of normal allele. It does not add any toxic effect to the protein. Consequently, the disease is inherited in autosomal recessive fashion.
In contrast, Huntington mutation not only alters the structure of the functional protein but also adds toxicity to it. The altered protein is enable to interact with 100s of other proteins and inhibit or decrease their function. So, if only one allele is present then also, the mutated protein will be produced and it will result in the phenotype. Consequently, it is inherited as autosomal dominant fashion.
Answer: There's no way one species can become another through depuranization, which is a random change.
Explanation:
In cells, environmental (chemical or physical) and metabolic factors can cause DNA damage, which is the molecule that stores genetic material. In these cases, the damage done to the DNA is repaired.
<u>Many of these lesions cause a permanent structural damage to the DNA, which can alter the ability to be transcribed, or can cause mutated genes to be transcribed resulting in another protein.</u> Particularly, depurination is the hydrolytically cleavage of the β-N-glycosidic bond between the purines (adenosine or guanosine) and the carbon of the sugar group found in the DNA. This mutation results in the loss of the purine base and leads to the formation of apurinic site and results and severely disrupts the DNA structure. The most important causes of depurination is the presence of endogenous metabolites inside the cell as a result of various chemical reactions and due to the presence of mutagenic compounds. However, these apurinic sites <u>are usually repaired by portions of the base excision repair (BER) pathway</u>.
There's no way one species can become another through depuranization, which is a random change. Because it is highly unlikely that 5000 mutations are able to accumulate every day without being repaired, and that they are just the right mutations to have the same characteristics as a chimpanzee. <u>If the depurinations are not repaired, the cell will most likely either die or become cancerous.</u>