Substitute y=4x to the second equation:
x^2 + (4x)^2 = 17
x^2 + 16x^2 = 17
17x^2 = 17
x^2 = 17/17
x^2 = 1
x = 1 and -1
When x=1, y=4(1) = 4
When x=-1, y=4(-1) = -4
Thus the solutions would be (1,4) and (-1,-4). That would correspond to D. and A.
Example 1
Write y = x2 + 4x + 1 using function notation and evaluate the function at x = 3.
Solution
Given, y = x2 + 4x + 1
By applying function notation, we get
f(x) = x2 + 4x + 1
Evaluation:
Substitute x with 3
f (3) = 32 + 4 × 3 + 1 = 9 + 12 + 1 = 22
Example 2
Evaluate the function f(x) = 3(2x+1) when x = 4.
Solution
Plug x = 4 in the function f(x).
f (4) = 3[2(4) + 1]
f (4) = 3[8 + 1]
f (4) = 3 x 9
f (4) = 27
Example 3
Write the function y = 2x2 + 4x – 3 in function notation and find f (2a + 3).
Solution
y = 2x2 + 4x – 3 ⟹ f (x) = 2x2 + 4x – 3
Substitute x with (2a + 3).
f (2a + 3) = 2(2a + 3)2 + 4(2a + 3) – 3
= 2(4a2 + 12a + 9) + 8a + 12 – 3
= 8a2 + 24a + 18 + 8a + 12 – 3
= 8a2 + 32a + 27
Answer:
1369
Step-by-step explanation:
3.7 x 10 = 37 x 37 = 1369
Answer:
The simplest (and most commonly used) area calculations are for squares and rectangles. To find the area of a rectangle, multiply its height by its width. For a square you only need to find the length of one of the sides (as each side is the same length) and then multiply this by itself to find the area.